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Effects of external intermittency and mean shear on the spectral inertial-range
exponent in a turbulent square jet
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This study investigates by experiment the dependence of the inertial-range exponent m of the streamwise
velocity spectrum on the external intermittency factor γ (≡ the fraction of time the flow is fully turbulent) and
the mean shear S in a turbulent square jet. Velocity measurements were made using hot-wire anemometry in
the jet at 15 < x/De < 40, where De denotes the exit equivalent diameter, and for an exit Reynolds number of
Re = 50 000. The Taylor microscale Reynolds number Rλ varies from about 70 to 450 in the present study.
The TERA (turbulent energy recognition algorithm) method proposed by Falco and Gendrich [in Near-Wall
Turbulence: 1988 Zoran Zariç Memorial Conference, edited by S. J. Kline and N. H. Afgan (Hemisphere
Publishing Corp., Washington, DC, 1990), pp. 911–931] is discussed and applied to estimate the intermittency
factor from velocity signals. It is shown that m depends strongly on γ but negligibly on S. More specifically,
m varies with γ following m = mt + (ln γ −0.0173)1/2, where mt denotes the spectral exponent found in fully
turbulent regions.
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I. INTRODUCTION

The Kolomogrov 1941 theory [1], which is often referred to
as K41, has unveiled some intrinsic features of homogeneous
isotropic turbulence. One result from K41 is the “–5/3” law [2],
i.e., the energy spectrum in the inertial range (IR) follows a
power relationship,

E(k) = Cε2/3k−5/3, (1)

where E(k) is the energy spectrum density function, C is the
universal Kolmogorov constant (≈1.5) for three-dimensional
spectra and the Obukhov-Corrsin constant (≈0.4) for one-
dimensional spectra (see, e.g., Sreenivasan [3,4] or Pope [5]),
ε is the energy dissipation rate, and k is the wave number.
The − 5/3 power law, which has been verified in numerous
experimental studies for turbulent flows over “high” Reynolds
numbers [6–8], indicates that turbulence energy is transferred
from large- to small-scale fluctuations without energy dissipa-
tion within the IR. However, the hypotheses for the − 5/3
law [1] (also see Ref. [9]) are strict so that this power
law needs some modifications for flows encountered under
common laboratory experimental conditions. For example, the
scaling exponent [the absolute value of the exponent of k in
Eq. (1)], denoted as m, is found to deviate from 5/3 in many
studies [10–16].

Moreover, the deviation of the scaling exponent (m) from
5/3 may be caused by insufficiently high Reynolds number,
flow anisotropy, or possibly other factors. Mydlarski and
Warhaft [16] found the Reynolds number dependence of m

in grid turbulence and obtained

m = (5/3)
(
1 − 3.15R

−2/3
λ

)
for 50 � Rλ � 473,

where Rλ(=〈u2〉1/2λ/ν) is the Taylor microscale Reynolds
number and λ(=〈u2〉1/2/〈∂u/∂x〉2)1/2 is the Taylor microscale
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representing the viscosity-dependent largest-scale eddies.
Later, Gamard and George [17] confirmed the result of
Mydlarski and Warhaft [16] by deriving a theoretical solution
of the Rλ-m relationship for grid turbulence. More recently,
the experimental investigations [18,19] were performed on
the Reynolds number dependence of m and also for small
scales in grid turbulence. Kuznetsov et al. [20] investigated
the fine-scale structure in intermittent shear flows and noted
the dependence of m on the external intermittency factor
γ . Specifically, γ is a measure of “external intermittency”
[20–22] or “large-scale intermittency” [23], which is related
to the turbulent or nonturbulent interfaces [21]. Internal or
small-scale intermittency is related to the energy dissipation
rate of small-scale turbulence, which will not be considered
in this paper. Mi and Antonia [23] discussed the impact of γ

on m at x/De = 40 of a turbulent round jet and discovered
that m is also influenced by the mean shear rate S. Especially,
they noted that Rλ has a small influence on m when compared
to those of the intermittency factor γ and the mean shear rate
S. They observed that m ≈ 1.5 along the jet centerline at
Re = 16 000, where γ = 1 and S = 0.

The scaling exponent m, as an intrinsic property of
turbulence, is believed to be affected by the local status of the
flow. Likewise, the structure function fn, another important
intrinsic characteristic, is also found dependent on Re and
the mean shear (see, e.g., Shen and Warhaft [24], and Jiang
et al. [25]). So far, Rλ, γ , and S have been found to influence
m in anisotropic turbulent flows such as wakes and jets.
Recently, Xu et al. [26] have experimentally validated the
Rλ-m relationship obtained for grid turbulence by Mydlarski
and Warhaft [16] in a turbulent square jet. The present study
considers the same square jet data set obtained during that
experimental campaign with a focus on the individual effects
of γ and S on m. In other words, the present work investigates
the dependence of m on the large-scale intermittency γ and
the mean shear S across the jet. Although Mi and Antonia [23]
have already reported a similar investigation based on scalar
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signals in a turbulent round jet, an investigation directly based
on the velocity signal is needed to examine or extend the
results. The choice of a turbulent square jet would further
validate the results from a round jet. Also, the effects of γ

and S on m are important since, as shown later, the influence
of S on m is negligible, a result that contradicts Mi and
Antonia [23]. This investigation should be fundamentally
important since revealing the relationship between γ and m,
i.e., the interactions between flow profiles and the intrinsic
characteristics, may lead to some physical insights into the
turbulence evolution in this seldom interrogated region of a
jet.

The rest of this paper is organized as follows. The experi-
mental setup is briefly described in Sec. II. The data processing
methods, including the high-frequency noise filtering scheme
and the intermittency detection methods are documented and
discussed in Sec. III. In Sec. IV, the intermittency profile for
the present square jet is presented and a relationship between
m and γ is proposed to assist in evaluating the influence of
large-scale nonturbulent motion with distance from the jet exit
as well as in the jet lateral direction. Conclusions drawn from
the current work are provided in Sec. V.

II. EXPERIMENTAL SETUP

The experimental setup details are described in Ref. [26]
and are briefly repeated here. The square jet issued from
a square duct whose dimensions were 25 mm (side length,
H ) × 25 mm × 2000 mm (duct length) and the equivalent di-
ameter De [≡2(A/π )1/2] was 28.2 mm [Fig. 1(b)]. Figure 1(b)
also shows the coordinate definition. For breaking up the
large-scale structures and reducing the turbulence intensity,
the airflow was conditioned in a settling chamber with three
air filters before entering the square duct [Fig. 1(a)]. A square
plate of 100H was attached to the pipe exit to eliminate the
perturbations upstream from the exit. Room temperature was
22.0 ◦C ± 0.1 ◦C during the experiment.

The measurements were conducted over the range 0 � x/

De � 40, where x is the downstream distance from the nozzle
exit. The streamwise mean velocity Uj at the center of the
square exit varied from 4.2 to 26.4 m/s, which corresponds
to Reynolds number Re = Uj De/ν = 8000–50 000. Velocity
signals were obtained using an Auspex single hot-wire sensor
(tungsten wire of diameter dw = 5 μm and length lw = 1 mm)
that operated at an overheat ratio of 1.5. Before each
measurement, the hot wire was calibrated against a standard
Pitot static tube connected to a digital pressure transducer
(Datametrics model 590D-10W-2P1-V1X-4D). The sampling
frequency fs for all measurements was 40 kHz and the
cutoff frequency fc was set to half of fs according to the
Nyquist sampling theorem. A 12-bit A/D converter (National
Instruments, 6070E PCI) was used for digitalizing the signals
and each signal was recorded for 80 s to ensure statistical
convergence of the quantities in the present study.

Xu et al. [26] noted that the mean and fluctuating axial
velocity data reached asymptotic conditions around Re =
50 000; thus, those data from that Reynolds number are used
here to explore the effects of the external intermittency and
mean strain rate on the scaling exponent, m.

FIG. 1. (Color online) (a) Schematic of the experimental arrange-
ment and (b) three-dimensional square jet nozzle exit, jet notation,
and coordinate system.

III. DATA PROCESSING

A. Iterative high-frequency noise digital filter

To remove the high-frequency noise in velocity signals, the
iterative digital filter proposed by Mi et al. [27] was used.
This digital filter obtains the “true” cutoff frequency fK by
iteratively calculating the dissipation rate ε, the Kolmogorov
scale η, and the cutoff frequency fK (for filtering the signal),
since these three have the following relationship:

εm = ε[true dissipation] + εn[noise contribution] = Bε, (2)

ηm = [ν3/(Bε)]1/4 = B−1/4η, (3)

fKm = U (2πB−1/4η)−1 = B1/4fK, (4)

where the subscript m means “measured,” n means “noise,”
U is the local streamwise mean velocity, and B is a
constant reflecting the effect of high-frequency noise and
can be determined after the iterative filtering converges.
Equations (2)–(4) also describe how the noise affects the three
Kolmogorov scales. By calculating and filtering iteratively,
the noise contribution can be “squeezed out.” An experimental
validation of this method can be found in [28]. Note that this
filtering scheme does not affect the IR [28]; i.e., this scheme
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does not change the value of the scaling exponent, which is
to be investigated below. Also the applications of both the
local isotropy assumption and Taylor’s hypothesis used to
estimate the dissipation rate ε, i.e., ε = 15ν〈(∂u/∂x)2〉 and
〈(∂u/∂x)2〉 = (1/U 2)〈(∂u/∂t)2〉, do not influence the results
and conclusions drawn from the present study.

B. Determination of the intermittency factor

The intermittency factor γ was introduced first by
Townsend [29] who considered local isotropy in the turbulent
wake of a cylinder. He estimated γ by using the relationship
between the measured flatness Fm(u) and the flatness F0(u)
obtained from isotropic grid turbulence: Fm(u) = γ −1F0(u)
[29]; however, this method is impracticable when F0(u) is
not available. Thus, some authors have considered alternate
methods to determine γ in a turbulent jet; see, for example,
Corrsin and Kistler [30], Becker et al. [31], Wygnanski and
Fiedler [32], Antonia et al. [33], Bilger et al. [34], Gilliland
et al. [22], and Mi and Antonia [23] or, from velocity
signals [29,30] and scalar signals using probability density
function (PDF) methods [22,23,34]. An important component
in determining γ from velocity signals is the detector function
that is used to determine whether the signal is turbulent or
not. Hedley and Keffer [35] surveyed the detector functions
proposed before 1974. Falco and Gendrich [36] proposed
an intermittency detection method, which they called the
turbulent energy recognition algorithm (TERA) and later
Zhang et al. [37] modified this method by altering the threshold
criteria (M-TERA), to improve the stability when detecting γ

within a transitional boundary layer.
The TERA method uses u′∂u′/∂t as the detection function,

and the criterion for turbulence is∣∣∣∣u
′∂u′

∂t

∣∣∣∣ > C0

(
u′∂u′

∂t

)
rms

, (5)

where u′ denotes the velocity fluctuation. The left side of (5)
is the time average of the detection function over a predefined
time interval 	t and the right side is the criterion (threshold
level), where C0 is a preset threshold constant.

Figures 2(a1)–2(a4) illustrate how the turbulence velocity
signals are used to determine the intermittency factor γ using
the TERA method. A section of a typical velocity signal is
shown in Fig. 2(a1). The specific time τ = λ = /〈u2〉1/2 = 1/

〈(∂u/∂x)2〉1/2 for this section is about 3 ms and the duration of
this signal is about 40 ms. From the calculation of the detector
function, u′∂u′/∂t , the turbulent portion of the signal is well
captured; see Fig. 2(a2). Figure 2(a3) shows the time average of
|u′∂u′/∂t | over a predefined time interval 	t . A more precise
delineation of the turbulent signal may be obtained using an
indicator function I (t),

I (t) =
⎧⎨
⎩

1,
∣∣ u′∂u′

∂t

∣∣ > C0
(

u′∂u′
∂t

)
rms (signal is turbulent)

0,
∣∣ u′∂u′

∂t

∣∣ � C0
(

u′∂u′
∂t

)
rms (signal is nonturbulent)

,

(6)

as presented in Fig. 2(a4). Thus, the length of the turbulent
signal to that of the total signal is the intermittency factor
γ . A determination of γ from a real velocity signal using
the TERA method is illustrated in Fig. 2(b). A shorter time

FIG. 2. (Color online) Illustration of the detection procedure. (a1)
Time-sequential velocity signal [specific time τ = λ/〈u2〉1/2 = 1/

〈(∂u/∂x)2〉1/2 ≈ 3 ms; the duration is about 40 ms]; (a2) detector
function u′∂u′/∂t calculated from the signal; (a3) average of the
detector function in a predefined time interval 	t = 5 ms; (a4)
determination function I (t) of the signal; and (b) a determination
of γ from a real velocity signal (the duration is about 0.4 s).

interval correlates to increased detection sensitivity; however,
given that 	t = 1 ms does not give γ = 1 at the centerline, and
that there is diminished sensitivity for longer time intervals,
as can be noted from Fig. 3, 	t = 5 ms was chosen for the
intermittency detection. In fact, the range of the specific time
τ for these lateral locations is about 2–4 ms; thus 	t may be
set slightly larger than τ . The M-TERA method is similar to
TERA but uses CMū(∂u′/∂t)rms/(u′∂u′/∂t)rms as the criterion.

The TERA and M-TERA methods were applied to the
current data set for the square jet and the TERA method was
found better for detecting γ . As is shown in Fig. 4, at x = 15De

and x = 25De the intermittencies obtained using either TERA
or M-TERA are in reasonable accord; however, at x = 35De

there is significant difference between them. Since γ should
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FIG. 3. (Color online) Time interval effect on the intermittency
detection.

be close to 1.0 in the region between centerline and the shear
layer of the jet, i.e., the turbulence region, it is concluded that
M-TERA is probably less reliable than TERA. Thus, the TERA
method was applied for detecting γ of the current square jet.

Zhang et al. [37] have shown that the detection of the TERA
method deviates from the “exact result” when γ < 0.1 (see their
Fig. 5) and this deviation was also observed in the present γ

detection (not shown). However, it is worth noting that in the
present study the intermittency factors are all above 0.2 so
that the TERA method provides reliable results. The present
γ detection is confirmed below. Previous studies have shown
that the PDF method proposed by Bilger et al. [34] provides
satisfactory intermittency detections for scalar signals from
a turbulent jet [22,23], even when γ < 0.1. However, due
to the directionality of velocity, it can be deduced that the
PDF method may not be suitable for a velocity signal while
the TERA method may detect intermittency for both velocity
and scalar signals since the TERA method detects γ via the
intensity of fluctuations. Unfortunately, the scalar field of the
present square jet was not measured so it is not possible to
compare the performance of the PDF and the TERA methods.
The defects of the M-TERA and TERA method mentioned
above suggest that further study on the real-time flow energy
recognition for jet flow is needed.

FIG. 4. (Color online) External intermittencies detected by the
TERA and M-TERA methods.

FIG. 5. (Color online) Lateral profiles of the intermittency ob-
tained using the TERA method: (a) Comparison with the DNS and
LES results of Gilliland et al. [22]; (b) comparison with the results
of Mi and Antonia [23] and a fitting for the self-similarity of γ .
(Gilliland et al. did not provide the corresponding half-width so the
abscissae are normalized by (a) the equivalent diameter De and (b)
the corresponding half-widths, respectively).

IV. PRESENTATION AND DISCUSSION OF RESULTS

A. Intermittency and mean shear in the square jet

According to Mi and Antonia [23], the intermittency and
the mean shear are important to the scaling exponent in the
IR of a round jet and these two factors are considered below.
The variation of γ as a function of lateral and axial locations is

FIG. 6. (Color online) Lateral profiles of normalized mean
velocity and mean shear in the square jet.
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FIG. 7. (Color online) Spectra �∗
u(f ∗) of the streamwise velocity

at different y locations for x = 30De.

shown in Figs. 5(a) and 5(b). The TERA threshold constant was
set as C0 = 0.04, which provided good agreement between the
present far-field (x/De � 25) results and those from Gilliland
et al. [22] and Mi and Antonia [23]. Note that Gilliland et al.
presented results for a round free jet obtained using large eddy
simulation (LES) and direct numerical simulation (DNS) for
Re = 2400. They used a synthetic inlet boundary condition.
Therefore, the difference in the Re between these data sets
is apparent so that different intermittency detection results
are expected. Indeed, the present results are close to those of
Gilliland et al. [22] for x > 30De, and the differences in the
near field are probably due to incomplete development of the
simulated jet as well as the synthetic inlet boundary condition.
Figure 5(b) indicates that γ ≈ 1 within y/y1/2 � 1 while it
drops rapidly to zero at 1 < y/y1/2 � 2.5. When normalized

by the half-width of the jet, the intermittency factor exhibits a
self-similar characteristic in the far field for x > 25De. This
profile fits a Gaussian error function,

γ = 0.5{1-erf[2.40(y/y1/2 − 1.50)]}. (7)

Figure 6 presents the lateral mean shear, which is obtained
from the lateral mean velocity distribution fitted by a Gaussian
function,

U/Uc = e−(y/y1/2)2 ln 2. (8)

Relative to the intermittency, the mean velocity U reaches
self-similarity much earlier (x > 5De). The normalized mean
shear may be defined as

|S|∗ = (y1/2/Uc)|∂U/∂y|, (9)

the profile for which is given in Fig. 6, as can be obtained from
(8). Mi and Antonia [23] used a different definition for the
normalized mean shear (see their Fig. 2):

S∗ = |∂U/∂y|(ν/〈ε〉)1/2. (10)

We have chosen to use (9) rather than (10) because local
isotropy assumption is not expected to work in regions away
from the jet centerline. The maximum mean shear occurs at
y = 0.849y1/2 as may be noted from Fig. 6.

Before turning attention to the effects of the external
intermittency and mean shear, the appropriateness of using
a stationary hot wire to determine the intermittency can be
argued here. Generally speaking, the velocity measurements
obtained by a stationary single hot wire may be contaminated
by the reverse flow, especially in the outer region of the far
field. However, the estimation of γ only requires that the
turbulent or nonturbulent flow information be recorded, rather
than the velocity vector itself, and so should not be affected by

FIG. 8. (Color online) Scaling exponents (m, mt ) obtained from original signals and those excluding the nonturbulent component and the
Taylor microscale Reynolds number Rλ at different x locations in the far-field.
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the contamination. The contamination also may not influence
the scaling exponent since m is almost identical in the spectra
of u, v, and w [12]. Furthermore, the lateral mean velocity
(< 0.02U0) is negligible at y/y1/2 < 2 (see Fig. 5.6 in Pope
[38]) so that the reverse flow should not affect the conclusions
drawn from the present study.

B. Effect of the intermittency and mean shear
on the scaling exponent

According to K41, the scaling exponent m should be 5/3.
Yet, the value of m in the current jet flow deviates from 5/3.
This can be seen from spectra, in Fig. 7, of the streamwise
velocity u obtained at x = 30De. Discrepancies are observed
in the IR slope for different y locations. It is clear that, as
y increases, m grows, i.e., the spectra within the IR become
steeper. This is consistent with the observation of Mi and
Antonia [23]. Also, their observation is confirmed here that
Rλ has a smaller impact on m than does γ or S. Of note, these
authors demonstrated (as have Sadeghi and Pollard [39]) that,
as y increases, Rλ reduces but m grows. However, Mydlarski
and Warhaft [16] found that m decreases as Rλ reduces for
their investigation of grid turbulence. Hence it is deduced that
the Rλ effect on m is much smaller than that of γ or S, which
has been validated in Fig. 8.

The application of the TERA method enables the identifica-
tion of the nonturbulent component, the removal of which from
the original velocity signal allows the dependence of m only
on the intermittency to be determined. Figure 8 compares m

and mt , i.e., the scaling exponents with and without the effect
of γ , at various y locations for 30 < x/De < 40 along with
the lateral distributions of Rλ. It is shown that Rλ varies from
about 70 to 450 at different locations. Evidently, m increases
significantly with y while mt does not. More specifically, m

changes mildly at y < y1/2 and then rapidly increases beyond
y = y1/2. Note that m and mt decrease from about 1.6 to about
1.55 on the centerline, where γ = 1 and S = 0, over the region
30 < x/De < 40. According to Refs. [16] and [39], the only
factor that could be responsible for the decrease in m along
the centerline is Rλ. Indeed, Rλ drops from 412 to 318 over
the region 30 < x/De < 40. In addition, with the removal of
the nonturbulent component, all the scaling exponents decrease

FIG. 9. (Color online) Relationships between 	m and γ at
different downstream locations.

FIG. 10. (Color online) Lateral profiles of the scaling exponent
(mt ) of the velocity signal taken out the nonturbulent part.

and the largest diminution occurs at the outermost measured
positions.

If the nonturbulent portion of the velocity signal is removed,
the obtained signal should be related only to the turbulence
(thus mt ) and the spectrum should not be affected by the
external intermittency. It follows that the difference

	m = m − mt (11)

should result solely from γ . The γ ∼ 	m plots at different
downstream locations are presented in Fig. 9. Taking into
account the error in the acquisition of m, as the error bar
plotted in Fig. 9 indicates, 	m varies with γ according to

	m = (ln γ −0.0173)1/2. (12)

Note that those data from Mi and Antonia [23] are also plotted
in Fig. 9.

Figure 10 shows that the lateral profiles of mt obtained at
different x locations enable the effect of mean shear S on m to
be examined. If S has a significant impact on m, the variation of
mt (no γ effect) with y should be significant. However, Fig. 10
demonstrates that mt changes little across the jet. Hence, there
is no significant effect of mean shear on m. Moreover, the
result of Mi and Antonia [23] also suggests that S has a minor
influence on m. They chose the region where γ = 0.95–1 to
study the effect of S so that the γ effect is negligible. However,
a maximum of only 5% change in m is observed (see their
Fig. 7). Taking into account that γ influences m significantly,
it is hard to tell whether or not this 5% change in m is solely
caused by the mean shear.

V. CONCLUSIONS

The present study has investigated the effects of the
intermittency factor γ and the mean shear S on the spectral
scaling exponent m in the self-similar far field (x = 30–40De)
of a turbulent square jet at Re = 50 000. The TERA
method proposed by Falco and Gendrich [36] was used
to detect the intermittency in hot-wire velocity signals. It
was shown that the lateral distribution of the intermittency
factor γ reaches self-similarity in the present jet at x>30De

and can be well fitted by the Gaussian error function
γ = 0.5{1 − erf[2.40(y/y1/2 − 1.50)]}. It was also found that
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the intermittency factor γ has stronger impact on the scaling
exponent m than does the Taylor microscale Reynolds number
Rλ. The influence of γ on m can be described as

	m = m − mt = (ln γ −0.0173)1/2,

which may be applicable to other jet flows. By comparison,
the influence of the mean shear S is apparently negligible.
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