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ABSTRACT This paper investigates circular formation control problems for a group of anonymous mobile
robots in the plane, where all robots can converge asymptotically to a predefined circular orbit around a fixed
target point without collision, and maintain any desired relative distances from their neighbors. Given the
limited resources for communication and computation of robots, a distributed event-triggered method is
firstly designed to reduce dependence on resources in multi-robot systems, where the controller’s action is
determined by whether the norm of the event-trigger function exceeds zero through continuous sampling.
And then, to further minimize communications costs, a self-triggered strategy is proposed, which only uses
discrete states sampled and sent by neighboring robots at their event instants. Furthermore, for the two
proposed control laws, a Lyapunov functional is constructed, which allows sufficient stability conditions
to be obtained on the circular formation for multi-robot systems. And at the same time, the controllers are
proved to exclude Zeno behavior. At last, numerical simulation of controlling uniform and non-uniform
circular formations by two control methods are conducted. Simulation results show that the designed
controller can control all mobile robots to form either a uniform circular formation or a non-uniform circular
formation while maintaining any desired relative distances between robots and guaranteeing that there is no
collision during the whole evolution. One of the essential features of the proposed control methods is that
they reduce the update rates of controllers and the communication frequency between robots. And also, the
spatial order of robots is also preserved throughout the evaluation of the system without collision.

INDEX TERMS Multi-robot System, Circular Formation, Event-triggered, Self-triggered, Directed Net-
work

I. INTRODUCTION

IN recent years, the control of multi-robot systems (MRSs)
has gained increasing attention due to their wide ap-

plications, such as source localization [1], [2], pursuit and
evasion [3] and surveillance [4]–[6], as well as theoretical

challenges arising from the limitation in implementations.
Formation control for MRSs aiming to drive multiple mobile
robots to form and maintain a predetermined geometry has
been actively studied [7]–[12]. In these studies, robots can
move towards the desired location while maintaining specific
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geometries through collaboration [13], [14]. By forming de-
sired patterns, the robots can complete tasks with improved
quality of the collected data and better robustness against
adverse environmental interferences [15]. However, practical
implementations of robots often have limited computational
and communication capabilities, while tasks become increas-
ingly complex. Therefore, it is highly desirable to design
algorithms that can effectively utilize the communication
medium’s throughput capacity and robots’ computing re-
sources.

Event-triggered control mechanisms can replace com-
monly used periodic sampling, and consequently reduce the
costs of computation, communication, and actuator effort,
while maintaining the required performance [16]–[18], [21]–
[26]. For first-order MRSs, event-triggered control methods
have been actively studied for distributed formation control.
For example, both centralized and distributed event-triggered
control methods were designed to achieve consensus [17]. By
utilizing sampled data instead of continuous data, a periodic
event-based control framework was proposed for designing
consensus protocols [18]. [19] addressed the circular forma-
tion problems with limited communication bandwidth using
an encoder-decoder strategy. [20] further considered the sce-
nario when the agents are under communication and compu-
tation constraints. Note that in [19], [20], all the robots were
restricted to move in the 1-D space of a circle. For second-
order MRSs, a distributed event-triggered control algorithm
was proposed to reach consensus [21]. To further reduce
computation resources and communication costs, an event-
triggered control protocol based on the random sampling data
and an improved time-dependent threshold was developed for
the consensus of second-order multi-agent systems [22].

Forming circular formations is one of the most actively
studied topics within the realm of formation control. On the
one hand, circle formations are one of the simplest classes
of formations with geometric shapes, and on the other hand,
they are natural choices of the geometric shapes for a group
of robots to exploit an area of interest. The circular formation
problems can be classified into two essential tasks, target
circling and spacing adjustment [27], [28]. The target circling
aims to drive all robots to converge onto a circle around the
target, while spacing adjustment aims to adjust all agents to
reach the desired angular distance between pairs of neigh-
boring robots. For example, [29] dealt with the situation that
the mobile robots are subject to locomotion constraints. A
limit-cycle-based decoupled-design approach was proposed
to the circular formation problem [30], where each agent
is modeled as a kinematic point and can merely obtain the
relative positions of the target and its limited neighbors.
For promoting the more general formation framework to
establish, [31] studied a general formation problem for a
group of mobile robots in a plane, in which the robots are
required to maintain a distribution pattern, as well as to rotate
around or remain static relative to a static/moving target.
Moreover, event-triggered control has been widely applied
to control the movement of robots in one-dimensional (1-

D) space [19]–[22], [32]. However, few studies have been
conducted for circular formation via event-triggered control
in 2-D space, i.e., in the plane.

In our work, each robot, similar to Pioneer 3-DX [35],
perceives the relative position of the target and the distance
between the robot and its nearest counterclockwise neighbor
through communication, while the neighbor robot will sense
information in a clockwise direction. The main contributions
of this paper are listed as follows. Firstly, a distributed event-
triggered control method is designed to solve the circular
formation control problems for MRSs. Secondly, a self-
triggered strategy is proposed to further reduce the number
of control actions and the amount of communication between
neighbors without a significant performance reduction. In
fact, the self-triggered control strategy is a class of spe-
cial event-triggered control. The self-triggered strategy only
uses the discrete states sampled and sent by neighbors at
their event instants, such that continuous communication is
avoided. Thirdly, Lyapunov functions are constructed, that
allows to derive a sufficient stability condition on circular
formation for MRSs. Our theoretical analysis and numerical
simulations show that the proposed control methods can drive
all mobile robots to converge to desired expected equilibrium
points. Additionally, our results show that Zeno behavior,
which is a phenomenon in hybrid systems that is of special
interest, and it exists when an infinite number of discrete
transitions occur in a finite time interval, can be avoided. The
differences between this paper and previous works lie in:

(i) Different from previous works [19], [20], [29]–[31],
the main goal of this paper is to design distributed
event-triggered control laws that can guide a group of
anonymous mobile robots with restricted computation
and communication ability to form any given circular
formation.

(ii) Different from [33] paying attention to incorporating an
initial trajectory generator with the gradient-based inner
optimizer, the main objective of this paper is to provide
the conditions of order preservation guarantees collision
avoidance in our problem setting.

(iii) Different from [34] addressing the highly constrained,
nonlinear, and high-dimensional autonomous vehicle
overtaking maneuver planning problem with an en-
hanced multiobjective particle swarm optimization, a
more concise form of obstacle avoidance condition is
provided to solve the circular formation problems for
first-order dynamics MASs.

The remainder of this paper is organized as follows. In
Section II, the preliminary definitions and the problem for-
mulation are presented. A distributed event-triggered circle
formation control law for a first-order system is designed,
and the rigorous analysis of its performance is provided
in Section III. Section IV addresses a self-triggered circle
formation problem without continuous monitoring of the
state of neighbors. Simulation results are given in Section V
to validate the theoretical analysis. Section VI concludes the
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paper and indicates possible extensions.

II. PRELIMINARIES AND PROBLEM STATEMENT
This section first lays down the notions and basic concepts
from algebraic graph theory, then formulate the circular
formation problem for multiple autonomous mobile robots
in the plane.

A. PRELIMINARIES
The following two lemmas are used in our theoretical anal-
ysis. Lemma 1 is introduced to verify stability of the entire
system. Due to each agent is described by a kinematic point,
the interaction network between agents is described by a
directed graph using algebraic graph theory. Lemma 2, which
describes the properties of the directed graph, is required
to perform further theoretical analysis. The notations used
throughout this paper are listed in Table 1.

Lemma 1. ( [36]) For any x, y ∈ R and a > 0, the following
two properties are applied

1) xy ≤ a

2
x2 +

1

2a
y2,

2) (x2 + y2) ≤ (x+ y)2, if xy ≥ 0.
(1)

Lemma 2. ( [37]) Given a directed graph G, composed
of spanning trees, the vector ξ = [ξ1, ξ2, . . . , ξN ]T > 0
satisfies

∑N
i=1 ξi = 1 and ξTL = 0N , in which ξ denotes

the left eigenvector corresponding to zero eigenvalue of the
Laplacian matrix L. Furthermore, LTΘ + ΘLT is semi-
positive definite where Θ = diag{ξ1, ξ2, . . . , ξN}. After
taking square root of each element of Θ, we obtain Υ =
diag{γ1, γ2, . . . , γN}, where γi =

√
ξi, i = 1, . . . , N .

TABLE 1: Notations.

Notations Definations
R the set of real numbers
IN N ×N identity matrix
A, ‖A‖, AT matrix A, the Euclidean norm of A,

the transpose of A
1N , 0N N dimension column vectors with all

entries equal to 1 and 0
diag{a1, a2, . . . , aN} the diagonal matrix with diagonal el-

ements a1, a2, . . . , aN
G a directed graph composed of span-

ning trees
pi, p0 the mobile robot i, the predefined tar-

get point
ui the control input of robot i
p̂i the position of robot pi relative to the

target point p0
p̃i, p̃i− the position of robot pi relative to its

neighbor pi+ and pi−
αi, αi− the angle between robot pi and robot

pi+ and pi−
α∗
i , α∗

i−
the desired angle from robot pi to
robot pi+ and pi−

r the radius of the desired circular for-
mation

B. PROBLEM FORMULATION
Suppose in an obstacle-free plane, there exists N mobile
robots p = (p1, p2, . . . , pN ) and the predefined target p0 that

to be circle around, as shown in Fig. 1. Here, each robot is
anonymous and cannot recognize one from another and can
move freely in the plane. The initial position of each robot
is randomly generated and is not required to be distinguished
from each other, whereas no robots occupy the same position
with the target. For simplicity, the robots are labeled based on
their initial positions according to the following three rules
[30].

1) The labels are sorted in ascending order counterclock-
wise around the target.

2) For a robot located on the same ray extending from the
target, its label is sorted in ascending order from the
distance to the target point.

3) For robots occupying the same position, their labels will
be randomly selected.

FIGURE 1: N robots are initially located in the plane.

Then, the robots’ neighbor relationships are modeled by a
directed graph G = (V, E ,A), where V = {p1, p2, . . . , pN}
denotes a group of mobile robots, E = V × V is a set of
communication edges that connects pairs of robots, and A =
[aij ] ∈ RN×N denotes a weighted adjacency matrix.

In this relationship, each robot has only two adjacent
neighbors, i.e., in front of or behind itself, marked as Ni =
{i−, i+}, where

i+ =

{
i+ 1, i = 1, 2, . . . , N − 1,

1, i = N,
(2)

and

i− =

{
N, i = 1,

i− 1, i = 2, 3, . . . , N.
(3)

Let pi(t) = [xi(t), yi(t)]
T ∈ R2 be the position of robot

pi at the time t, and p0 = [x0, y0]T ∈ R2 be the predefined
target point. Therefore, robot pi is modeled by a kinematic
point

ṗi(t) = ui(t), i = 1, 2, . . . , N, (4)

where ui ∈ R2 is the control input of robot pi to be designed.

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3023374, IEEE Access

Xu et al.: Distributed Event-triggered Circular Formation Control for Multiple Anonymous Mobile Robots with Order Preservation and Obstacle Avoidance

Suppose that each robot can only use the relative positions
between the target and its two neighbors under the neighbor
relationship G, and it is worth noting that robots do not know
the label information. The following notations are introduced
to formulate the problem, as shown in Fig. 2.

FIGURE 2: Relative positions and angles of robot pi and its
neighbors.

Let
p̂i(t) = pi(t)− p0, i = 1, 2, . . . , N. (5)

be the position of robot pi relative to the target point p0.
The position of robot pi relative to its neighbor pi+ is

expressed as

p̃i(t) = pi+(t)− pi(t), i = 1, 2, . . . , N. (6)

The angle between robot pi and robot pi+ is described as

αi(t) = ∠pip0pi+ , i = 1, 2, . . . , N.. (7)

Let α∗i represent the desired angle from robot pi to its
neighbor robot pi+ , the desired angle of N robots is deter-
mined by the vector

α∗i = [α∗1, α
∗
2, . . . , α

∗
N ]T . (8)

Similarly, refers to (6), (7) and (8), the definations of robot
pi and robot pi− are written as

p̃i−(t) = pi−(t)− pi(t),
αi−(t) = ∠pip0pi− ,

α∗i− = [α∗1− , α
∗
2− , . . . , α

∗
N− ]T .

(9)

It is worth noting that there exists the desired radius r > 0,
α∗i > 0 and

∑N
i=1 α

∗
i = 2π such that the desired circular

formation is admissible, where r is the radius of the desired
circular formation.

Furthermore, to provide the N anonymous robots’ initial
states with their labels combined with the mathematical
descriptions, the following definitions of the robots’ spatial
ordering are proposed.

Definition 1. (Counterclockwise Order) The N robots are
indicated to be arranged in a counterclockwise order if αi ∈
(0, 2π) for all i = 1, 2, . . . , N and

∑N
i=1 = αi = 2π.

Definition 2. (Almost Counterclockwise Order) The N
robots are indicated to be arranged in an almost counter-
clockwise order if 1) αi ∈ [0, 2π) for all i = 1, 2, . . . , N and∑N
i=1 = αi = 2π; and 2) when αi = 0, ‖p̂i+‖ > ‖p̂i‖.

The definition of the circular formation problem is de-
scribed as follows.

Definition 3. (Circular Formation Problem) Given an ad-
missible circular formation in the plane characterized by α∗

and r, a distributed control protocol ui(t, α∗, r, p̂i(t),
p̃i(t), p̃i−(t)), i = 1, 2, . . . , N is designed such that the
solution to the MRS (4) converges to some equilibrium points
under any initial conditions, namely,

‖p̂i‖ = r, i = 1, 2, . . . , N, (Target radius) (10)

and

αi = α∗i , i = 1, 2, . . . , N, (Spacing adjustment)
(11)

are satisfied.

Moreover, the desired properties of circular formation
control for MRSs are presented as follows.

Definition 4. (Order Preservation) For an MRS with N
robots, under the control law ui(t), the robots’ spatial or-
dering is maintained if N robots are initially located in an
almost counterclockwise order in the plane. The solution to
the MRS (4) can guarantee N robots maintain in a counter-
clockwise order, for all t > 0.

Definition 5. (Collision Avoidance) For an MRS with N
robots, under the control law ui(t), the robots have the
property of collision avoidance if N robots are initially
arranged in an almost counterclockwise order in the plane.
The solution to the MRS (4) satisfies ‖pi‖−‖pj‖ > 0 for any
pair of i, j (i 6= j), for all t > 0.

III. EVENT-TRIGGERED CONTROL STRATEGY
Given a sampled-date protocol designed in [30], given as

ui(t) = ϕ

[
krli(t) −1

1 krli(t)

]
p̂i(t)gi(t), i = 1, 2, . . . , N,

(12)

where ϕ > 0, kr > 0 are constant. li(t) = r2 − ‖p̂i(t)‖ and

gi(t) = 1 +
1

2π

[
α∗i−

α∗i + α∗i−
αi(t)−

α∗i
α∗i + α∗i−

αi−(t)

]
.

(13)

From (13), the variable αi can be treated as an additional
state of the MRS. It is known that each robot has to transmit
a request continuously to its neighbors for acquiring their
additional states, and then calculate gi(t) and li(t). However,
in reality, the communication and computing capabilities of
robots usually have limitations, which makes the control law
(12) unable to be implemented in practice.

In order to address this issue, an event-triggered strat-
egy is proposed based on the addition states, in which
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computations of gi(t) and li(t) are only conducted at dis-
crete event instants. Therefore, undesirable transmission and
computation can be avoided. Let an increasing sequence
(ti0, t

i
1, . . . , t

i
k, . . .) denote the event instants of robot pi, such

that αi(tik) is the state of of robot pi at the k-th event instants.
Note that due to all robots trigger asynchronously and have
their own event sequences. Then, the control law based on
the event-triggered scheme is designed as

ui(t) = ϕ

[
krli(t

k
i ) −1

1 krli(t
k
i )

]
p̂i(t)gi(t

k
i ), t ∈ (tki , t

k+1
i ].

(14)

Substituting (12) into (4), the closed-loop dynamics of
robot pi is presented as

ṗi(t) = ϕ

[
krli(t

k
i ) −1

1 krli(t
k
i )

]
p̂i(t)gi(t

k
i ), i = 1, 2, . . . , N.

(15)

By p̂i(t), (15) can be rearanged as

˙̂pi(t) = ϕ

[
krli(t

k
i ) −1

1 krli(t
k
i )

]
p̂i(t)gi(t

k
i ), i = 1, 2, . . . , N.

(16)

Moreover, from (7), we have

˙̂αi(t) = ˙̃αi+(tki )− ˙̃αi(t
k
i ), i = 1, 2, . . . , N, (17)

where α̃i(tki ) denotes the angle of the vector p̂i(tki ).
Then,

˙̃αi(t
k
i ) = ϕgi(t

k
i ),

‖ ˙̂pi(t
k
i )‖ = krϕ‖p̂i(tki )‖(r2 − ‖p̂i(tki )‖2)gi(t

k
i ).

(18)

Substituting (18) into (17), the dynamical equation of the
additional states combined with the event-triggered strategy
is obtained as

α̇i(t) = ϕ(gi+(tik)− gi(tik)), t ∈ [tik, t
i
k+1), (19)

Assuming that α̂i(t) = αi(t
i
k), δi(t) = αi(t)/α

∗
i , δ̂i(t) =

α̂i(t)/α
∗
i , (19) can be rearranged as

α∗i δ̇i(t) =
ϕ

2π

([
α∗i

α∗i+ + α∗i
α̂i+(t)−

α∗i+

α∗i+ + α∗i
α̂i(t)

]
−[

α∗i−

α∗i + α∗i−
α̂i(t)−

α∗i
α∗i + α∗i−

α̂i−(t)

])
.

(20)

Using δi, (20) can be summarized into a simple form as

δ̇i(t) =
ϕ

2π

∑
j∈Ni

α∗j
α∗i + α∗j

(
δ̂j(t)− δ̂i(t)

)
, t ≥ 0. (21)

A deviation variable is defined as ei(t) = δ̂i(t) − δi(t).
Then a compact form of the system dynamics can be derived
as

δ̇(t) = − ϕ

2π
LTd (δ(t) + e(t)), t ∈ [tik, t

i
k+1), (22)

where δ(t) = [δ1(t), δ2(t), . . . , δN (t)] ∈ RN , and e(t) =

[e1(t), e2(t), . . . , eN (t)] ∈ RN .
For the dynamical equation (19), the event-triggered cir-

cular formation control for MRSs can be solved by Theorem
2.

Theorem 1. Given any admissible circular formations char-
acterized by α∗ and r, considering the MRS (4) and the
designed control law (14) over a strongly connected weight
unbalanced digraph G, the circular formation problem is
solvable when the event-trigger condition designs as

fi(t) = ‖ei(t)‖ −
σ‖γiδ̄i(t)‖

‖ΥLTd ‖ρe‖li(t)‖
, 0 < σ < 1, (23)

where ρ > 1, δ̄i(t) is the i-th elements of δ̄(t) =
[δ̄1(t), δ̄2(t), . . . , δ̄N (t)]T , LTd δ(t), Υ is the same diagonal
matrix as described in Lemma 2, γi is the i-th diagonal
element of matrix Υ.

Furthermore, in the MRS (4), there exists at least one robot
m ∈ V for which the next inter-event interval is strictly
positive under event-triggered condition (23).

Proof:
A Lyapunov function candidate is considered as

V (t) =
1

4
δT (t)(LdΘ + ΘLTd )δ(t), (24)

where Θ is the same diagonal matrix as in Lemma 2, such
that LdΘ + ΘLTd is semi-positive definite.

As a result, V (t) ≤ 0 and V (t) = 0 if the circular
formation problem is solvable. Then, the derivative of the
Lyapunov function (24) along with the trajectories of the
MRS yields to

V̇ (t) = δT (t)LdΘ(− ϕ

2π
LTd (δ(t) + e(t)))

= − ϕ

2π
δT (t)LdΘL

T
d δ(t)−

ϕ

2π
δT (t)LdΘL

T
d e(t)

≤ − ϕ

2π
‖ΥLTd δ(t)‖2 +

ϕ

2π
‖ΥLTd δ(t)‖‖ΥLTd e(t)‖ρe‖li(t)‖,

(25)

Enforcing the event condition (23), we obtain that
‖ei(t)‖ ≤ σ‖γiδ̄i(t)‖

‖ΥLT
d ‖ρe

‖li(t)‖
. Subsequently, ρe‖li(t)‖‖ΥLTd e(t)‖ ≤

ρe‖li(t)‖‖ΥLTd ‖‖e(t)‖ ≤ σ‖ΥLTd δ(t)‖. Then, (25) is rear-
ranged into

V̇ (t) ≤ ϕ

2π
‖ΥLTd δ(t)‖2(σ − 1)

≤ ϕ

2π
‖Υδ̄(t)‖2(σ − 1).

(26)

As 0 < σ < 1, we obtain that V̇ (t) ≤ 0 and V̇ (t) = 0 if
the circular formation problem is solvable.

In the following, the realization of the desired addition
state is explained in detail.

Since the graph G = (V, E ,A) is strongly connected, we
have

lim
t→∞

δ(t) = clN (27)

where c > 0 is a constant.
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Ld =



α∗2
α∗2+α∗1

+
α∗N

α∗N+α∗1
− α∗1
α∗2+α∗1

0 . . . 0 − α∗1
α∗N+α∗1

− α∗2
α∗2+α∗1

α∗3
α∗3+α∗2

+
α∗1

α∗2+α∗1
− α∗2
α∗3+α∗2

. . . 0 0

...
...

...
...

...
...

0 0 0 . . .
α∗N

α∗N+α∗N−1
+

α∗N−2

α∗N−1+α∗N−2
− α∗N−1

α∗N+α∗N−1

− α∗N
α∗N+α∗1

0 0 . . . − α∗N
α∗N+α∗N−1

α∗1
α∗N+α∗1

+
α∗N−1

α∗N+α∗N−1


,

By the definition of δ(t), we have

lim
t→∞

α(t) = cα∗ (28)

Note that αi(t) satisfies
∑N
i=1 αi = 2π for all t ≥ 0,

and α∗i (t) satisfies
∑N
i=1 α

∗
i = 2π, we derive c = 1. More

precisely,
lim
t→∞

α(t) = α∗.

This result indicates that the desired addition states can be
achieved by all robots.

Further, an estimate of the positive lower bound on the
inter-event times is proved. It is easy to obtain that for robot
pi, the event interval between tik+1 and tik is the period
‖ei(t)‖
γiδ̄i(t)

, which increases from 0 to σ
‖ΥLT

d ‖ρe
‖li(t)‖

. Define
m = arg maxi∈V ‖γiδ̄i(t)‖, robot m stands for maximum
the maximum norm of γiδ̄i(t) among all the robots, which
implies

‖em(t)‖
‖γmδ̄m(t)‖

≤ ‖e(t)‖
‖γmδ̄m(t)‖

≤
√
N‖e(t)‖
‖Υδ̄(t)‖

. (29)

From (29), the time ‖em(t)‖
‖γmδ̄m(t)‖ attains σ

‖ΥLT
d ‖ρe

‖li(t)‖
is

longer than
√
N‖e(t)‖
‖Υδ̄(t)‖ costs. That is, τm > τ , where τm

represents positive interval (tmk+1−tmk ) is lower bounded, and
τ is the time ‖e(t)‖

‖Υδ̄(t)‖ increasing from 0 to σ√
N‖ΥLT

d ‖ρe
‖li(t)‖

.

Thereby, the time derivative of ‖e(t)‖‖Υδ̄(t)‖ is written as (30).

Let β stand for ‖e(t)‖
‖Υδ̄(t)‖ , then, β̇ ≤ ϕ

2π‖Υ
−1‖(1 +

‖ΥLTd ‖β)2. Here, β ≤ ε(t, ε0), where ε(t, ε0) is the so-
lution of ε̇(t, ε0) = ϕ

2π‖Υ
−1‖(1 + ‖ΥLTd ‖α(t, α0))2, and

ε(0, ε0) = ε0.
According to

2πdε

ϕ‖Υ−1‖(1 + ‖ΥLTd ‖ε(t, ε0))2
= dt, (31)

we can see that the interval between event instants tk and
tk+1 is lower bounded by the interval τ which satisfies
ε(τ, 0) = σ

‖ΥLT
d ‖ρe

‖li(t)‖
. By solving (31), we have

τ =
2πε(τ, 0)

ϕ‖Υ−1‖(1 + ‖ΥLTd ‖ε(τ, 0))

=
2πσ

ϕ(ρe‖li(t)‖ + σ)‖ΥLTd ‖‖Υ−1‖
.

(32)

From (32), we obtain

τ
′

=
2πσ

ϕ(
√
Nρe‖li(t)‖ + σ)‖ΥLTd ‖‖Υ−1‖

,

where τ
′

is the time ‖e(t)‖
‖Υδ̄(t)‖ ranging from 0 to

σ√
N‖ΥLT

d ‖ρe
‖li(t)‖

.
The minimal interval between two event instants of robot

m can be written as

τm =
2πσ

ϕ(
√
Nρe‖li(t)‖ + σ)‖ΥLTd ‖‖Υ−1‖

. (33)

From τm > 0, we draw a conclusion that there exists at
least one robot m ∈ N in the MRS (4), which prevents
the occurrence of Zeno behavior under the event-trigger
condition (23).

IV. SELF-TRIGGERED CONTROL STRATEGY
The event-triggered solution, earlier discussed in Section III,
assumes continuous communication among the neighbor-
ing robots. In this section, a self-triggered strategy, which
is a special class of event-triggered control, is applied to
minimize communications costs further. Namely, the self-
triggered strategy only uses the discrete states that are sam-
pled and sent by neighbors at their own event instants.

For the designed dynamical equation (19), the self-
triggered circular formation control for the distributed MRSs
is solved by Theorem 2.

Theorem 2. Given any admissible circular formations char-
acterized by α∗ and r, and considering the MRS (4) and the
designed control law (14) over a strongly connected weight-
unbalanced digraph G, the circular formation problem is
solvable when the event-triggered condition is designed as

f̃i(t) = ‖ei(t)‖ −
‖LTd (i, j)δ̂(t)‖

(b+ 1)‖LTd ‖ρe‖li(t)‖
, b > 0, (34)

where LTd (i, j)δ̂(t) =
∑
j∈Ni

LTd (i, j)(δ̂i(t)− δ̂j(t)).
And the condition

−ξi +
ξ2
i

2a
+

b+ 1

b3(t)M
> 0, i = 1, 2, . . . , N, (35)

holds simultaneously, where M = min{ρe‖li(t)‖}. More-
over, the self-trigger condition (34) helps the MRS (4) to
avoid the occurrence of Zeno behavior.

Proof:
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d

dt

‖e(t)‖
‖Υδ̄(t)‖

=
d

dt

(e(t)T e(t))1/2

(δ̄T (t)ΥΥδ̄(t))1/2

=
e(t)ė(t)

‖e(t)‖‖Υδ̄(t)‖
− δ̄T (t)ΥΥ ˙̄δ(t)‖e(t)‖

‖Υδ̄(t)‖3

=
−ϕe(t)Υ−1Υ(δ̄(t) + LTd e(t))

2π‖e(t)‖‖Υδ̄(t)‖
− ϕδ̄T (t)ΥΥLTd (δ̄(t) + LTd e(t))‖e(t)‖

2π‖Υδ̄(t)‖2‖Υδ̄(t)‖

≤ ϕ‖Υ−1‖(‖Υδ̄(t)‖+ ‖ΥLTd e(t))‖
2π‖Υδ̄(t)‖

+
ϕ‖ΥLTd ‖‖Υ−1‖(‖Υδ̄(t)‖+ ‖ΥLTd e(t)‖)‖e(t)‖

2π‖Υδ̄(t)(t)‖2

≤ ϕ‖Υ‖
2π

(
1 +
‖e(t)‖‖ΥLTd ‖‖Υδ̄(t)‖

‖Υδ̄(t)‖

)2

.

(30)

A Lyapunov function candidate is considered as

V (t) =
1

4
δT (t)(LdΘ + ΘLTd )δ(t), (36)

As a result, V (t) > 0 and V (t) = 0 if the circular
formation problem is solvable. Then the derivative of the
Lyapunov function along of the trajectories of the MRS (4)
yields to

V̇ (t) = δT (t)LdΘ(− ϕ

2π
LTd (δ(t) + e(t)))

= − ϕ

2π
δT (t)LdΘL

T
d δ(t)−

ϕ

2π
δT (t)LdΘL

T
d e(t).

(37)

From Lemma 1, there exists δT (t)LdΘL
T
d e(t) ≤

1
2aδ

T (t)LdΘ
2LTd δ(t) + a

2e
T (t)LdL

T
d e(t) such that (37) is

rearranged into

V̇ (t) ≤ − ϕ

2π
δT (t)LdΘL

T
d δ(t)+

ϕ

2π
(

1

2a
δT (t)LdΘ

2LTd δ(t) +
a

2
eT (t)LdL

T
d e(t)).

(38)

In the following, we explain the analytical relationship
between δT (t)LdL

T
d δ(t) and eT (t)LdL

T
d e(t).

From the designed self-trigger condition (34), we have

LTd e(t) ≤ ‖LTd ‖‖e(t)‖ ≤
‖LTd δ̂(t)‖

(b+ 1)ρe‖li(t)‖
. (39)

Together with the definition of ei and (39), it yields to

eT (t)LdL
T
d e(t) ≤

1

(b+ 1)2ρ2e2‖li(t)‖(
(δ(t) + e(t))TLdL

T
d (δ(t) + e(t))

)
≤ 1

(b+ 1)2ρ2e2‖li(t)‖

(
δ(t)TLdL

T
d δ(t)+(

.e(t)TLdL
T
d e(t) + 2δ(t)TLdL

T
d e(t))

)
≤ 1

(b+ 1)2ρ2e2‖li(t)‖
(1 +

1

b
)δ(t)TLdL

T
d δ(t)

+
1 + 2b

(b+ 1)2ρ2e2‖li(t)‖
e(t)TLdL

T
d e(t).

(40)

Thus,

eT (t)LdL
T
d e(t) ≤

b+ 1

b3(t)M
δ(t)TLdL

T
d δ(t). (41)

Substituting (41) into (38), we have

V̇ (t) ≤ − ϕ

2π
δT (t)LdΘL

T
d δ(t) +

ϕ

2π
(

1

2a
δT (t)LdΘ

2LTd δ(t)

+
b+ 1

b3(t)M
δ(t)TLdL

T
d δ(t))

≤ − ϕ

2π

N∑
i=1

(−ξi +
ξ2
i

2a
+

b+ 1

b3(t)M
)‖δ̄i‖.

(42)

Therefore, the condition (34) guarantees V̇ (t) < 0 and
V̇ (t) = 0 if the circular formation problem is solvable.

To avoid Zeno behavior, an estimate of the positive lower
bound on the inter-event times is further proved. Assuming
that the k + 1th event of robot pi occurs at the time tik + τi,
we derives ‖ei(tik)‖ = 0, and

‖ei(tik + τi)‖ =
‖LTd (i, j)δ̂(t)‖

(b+ 1)‖LTd ‖ρe‖li(t)‖
. (43)

From the trajectory of ei(t), we have

‖ei(tik + τi)‖ =

∥∥∥∥∥
∫ tik+τi

tik

ėi(t)dt

∥∥∥∥∥
=

∥∥∥∥∥
∫ tik+τi

tik

δ̇i(t)dt

∥∥∥∥∥
=

∥∥∥∥∥
∫ tik+τi

tik

ϕ

2π
LTd (i, j)δ̂(t)dt

∥∥∥∥∥
≤ ϕ

2π
‖LTd (i, j)δ̂(t)‖τ

(44)

Substituting (43) into (44), we get

‖LTd (i, j)δ̂(t)‖
(b+ 1)‖LTd ‖ρe‖li(t)‖

≤ ϕ

2π
‖LTd (i, j)δ̂(t)‖τ, (45)

where τ = 2π
ϕ(b+1)‖LT

d ‖ρe
‖li(t)‖

≥ 0.
To sum up, if a neighbour triggers during the interval

between two consecutive events of robot pi, that is, the
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neighbour triggers at time tik + τj ≤ tik + τi . Then the
interval is greater than τj . We conclude that the intervals
between events that generated by the self-triggered function
are positive.

V. NUMERICAL EXAMPLES
Considering an MRS, consisting of six mobile robots located
in the plane, the target point is set to (0, 0), and the desired
angle distances between each pair of neighboring robots are
set to satisfy (8). Namely, the desired distribution pattern can
be set arbitrarily as long as the coefficients of the designed
controller make sure the condition holds. The initial positions
of six robots are randomly generated.

To show the relative superiority of the event triggered strat-
egy, the event detection of all those simulations is executed
using a sampled-data approach. Here, h = 0.01s is chosen as
the sampling periods in real-time control. We choose the co-
efficients of the controller to make ensure the condition holds.
To our best knowledge, the role of coefficients mentioned is
to keep li(t) remain at least an order of magnitude comparing
to g(t).

A. EXAMPLE OF EVENT-TRIGGERED FORMATION
CONTROL
We first apply the event-triggered control strategy to the
uniform circular formation control with the desired angle
distance α∗i = π/3 and the desired radius of the circular
formation r = 100. Using the proposed control law, the
coefficients of which are set to ϕ = 0.4, kr = 0.002 to satisfy
the event-triggered condition (23), to solve the uniform circle
formation problem and the simulation results are shown in
Fig. 3. Fig. 3(a) reveals the trajectories of six robots in the
plane, and Fig. 3(b) shows the difference between the event-
triggered angled and the set angles, the distances difference
between the event-triggered radius of the circular formation
and the predefined radius, and the evolution of control laws
of the six robots, respectively. We observe that the desired
uniform circular formation can be achieved asymptotically
under the designed control law. Furthermore, the average
inter-event time for all robots is obtained as havg = 0.0229.
Comparing to the sampling period h, we can observe that
the average inter-event period havg has the advantages of
reducing the amount of control update. Note that increasing
σ can further reduce computation over the whole process, but
will increase the cumulative error of the system, which leads
to system uncertainties.

We then extend the method to the non-uniform circular
formation, where the desired angle distance is set to α∗ =
[π/4, π/3, 3π/8, 7π/24, π/3, 5π/12]. Furthermore, r, initial
positions of robots, as well as the coefficients ϕ, kr are set
the same as the first case. The simulation results are shown
in Fig. 4. Fig. 4(a) reveals the trajectories of six robots in the
plane, and Fig. 4(b) shows the differences between the event-
triggered angles and the set angles, the distances differences
between the event-triggered radius of the circular formation
and the predefined radius, and the evolution of control laws

-100 0 100

x
i
(t)

-100

0

100

y
i(t

)

*

**

*

*

*

+

target

Robot 1

Robot 2

Robot 3

Robot 4

Robot 5

Robot 6

*    Start

(a) The trajectories of six robots in the plane at t ∈ (0, 200)

(b) The evolution of ‖αi(t
k
i )−α∗

i ‖, ‖pi(tki )−p0‖, ‖ui(t)‖ for i = 1, 2, . . . , 6

FIGURE 3: Uniform circular formation control via event-triggered
strategy.

of the six robots, respectively. We can observe that compared
to the convention circular formation control algorithm, as
shown in Reference [30], due to the event-triggered strategy,
trade-offs among actuator effort and computation would be
reduced dramatically by as much as 1/3 without increasing
the computational complexity. For both uniform and non-
uniform circular formation, the multiple robots under the
control law (14) have the properties of order preservation and
collision avoidance. It should be noted that compared with
traditional protocols, the use of event-triggered control may
introduce convergence errors.

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3023374, IEEE Access

Xu et al.: Distributed Event-triggered Circular Formation Control for Multiple Anonymous Mobile Robots with Order Preservation and Obstacle Avoidance

-100 0 100

x
i
(t)

-100

0

100

y
i(t

)

*
* +

Target

**

*

*

Robot 1

Robot 2

Robot 3

Robot 4

Robot 5

Robot 6

*    Start
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FIGURE 4: Non-uniform circular formation control via event-
triggered strategy.

B. EXAMPLE OF SELF-TRIGGERED FORMATION
CONTROL

The self-triggered control strategy is first applied to the
uniform circular formation control with the desired angle
distance α∗i = π/3 and the desired radius of the circular
formation r = 100. Using the proposed control law, the
coefficients of are set to ϕ = 0.4, kr = 0.002 to satisfy the
trigger function (34), to solve the uniform circle formation
problem and the simulation results are shown in Fig. 5. Fig.
5(a) shows the trajectories of six robots in the plane, and Fig.
5(b) shows the difference between the event-triggered angled

and the set angles, the difference of the distances between
the event-triggered radius of the circular formation and the
predefined radius, and the evolution of control laws of the
six robots, respectively. We observe that the desired uniform
circular formation can be achieved asymptotically under the
designed self-triggered control law.

The self-triggered control strategy is also extended to the
non-uniform circular formation problem, where the desired
angle distance is set toα∗ = [π/4, π/3, 3π/8, 7π/24, π/3, 5π/12].
And r, initial positions of robots, as well as the coefficients
ϕ, krare set the same as the previous case. The simulation
results are shown in Fig. 6. Fig. 6(a) reveals the trajectories
of six robots in the plane, and Fig. 6(b) shows the differences
between the event-triggered angles and the set angles, the
distances differences between the event-triggered radius of
the circular formation and the predefined radius, and the
evolution of control laws of the six robots, respectively.
We can see that the desired non-uniform circular formation
can be achieved asymptotically under the designed self-
triggered control law. Comparing Fig. 4(b) with Fig. 6(b), we
observe that under the self-triggered control with intermittent
monitoring of measurement errors, the MRS can still achieve
circular formation. Hence, the energy consumption of com-
munication can be reduced under the designed self-triggered
control law.

To further compare the performance between the event-
triggered and self-triggered control strategies, the average
inter-event period, the amount of computation, and data
transmissions of each simulation case are listed in Table 2.
We can see from Table 2 that in terms of the frequency of
control updates, the result of the self-triggered method is
more conservative than the event-triggered schemes. How-
ever, event-triggered control still requires continuous com-
munication. The self-triggered control law is effective in
reducing both data transmission and amounts of computation,
in which the next triggered instance is predicted relied upon
the last triggered data. Thus, we draw a conclusion that the
proposed self-triggered control law is effective in reducing
data transmission, and the control time changes very little.
From a practical point of view, this is more straightforward
to apply to resource-limited situations.

TABLE 2: Data Transmission Comparison.

Methods Average
inter-event
period (s)

Number of
computation
times

Number of
data transmis-
sion times

Event-triggered
(uniform)

0.0229 8733 20000

Event-triggered
(non-uniform)

0.0285 7017 20000

Self-triggered
(uniform)

0.0155 12903 12903

Self-triggered
(non-uniform)

0.0157 12738 12738

VI. CONCLUSION
This paper investigated the problem of controlling a group of
anonymous mobile robots distributed in a circular formation.

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3023374, IEEE Access

Xu et al.: Distributed Event-triggered Circular Formation Control for Multiple Anonymous Mobile Robots with Order Preservation and Obstacle Avoidance

(a) The trajectories of six robots in the plane at t ∈ (0, 200)

(b) The evolution of ‖αi(t
k
i )−α∗

i ‖, ‖pi(tki )−p0‖, ‖ui(t)‖ for i = 1, 2, . . . , 6

FIGURE 5: Uniform circular formation control via event-triggered
strategy.

Given the robots’ limited communication and computation
resources, a distributed event-triggered algorithm was de-
signed to reduce dependence on resources in MRSs. Through
continuous sampling among the neighboring robots, the
designed event-trigger controller judges whether the event
trigger function’s norm exceeds zero to determine the con-
troller’s update. To further minimize communications costs,
a self-triggered strategy only uses the discrete states that
sampled and sent by neighboring robots at their own event
instants was proposed, which can reduce both the compu-
tation and the communication frequency between robots by
up to 1/3. Moreover, theoretical analysis proved that the two

(a) The trajectories of six robots in the plane at t ∈ (0, 200)

(b) The evolution of ‖αi(t
k
i )−α∗

i ‖, ‖pi(tki )−p0‖, ‖ui(t)‖ for i = 1, 2, . . . , 6

FIGURE 6: Non-uniform circular formation control via self-
triggered strategy.

proposed controllers could completely avoid Zeno behavior.
At last, numerical simulation results of using two controllers
to control uniform and non-uniform circular formations were
given to verify the theoretical analysis. Future work will
extend the proposed method in this paper to more complex
systems, such as adding the influence of space-time topology
or considering unreliable links in communication networks.
Also, finding convincing comparison results is also one of the
main focuses of our next work.
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