
Theoretical and Applied Mechanics Letters 5 (2015) 117–120
Contents lists available at ScienceDirect

Theoretical and Applied Mechanics Letters

journal homepage: www.elsevier.com/locate/taml

Letter

On two distinct Reynolds number regimes of a turbulent square jet

Minyi Xu a,∗, Jianpeng Zhang b, Pengfei Li b, Jianchun Mi b

a Marine Engineering College, Dalian Maritime University, Dalian 116026, China
b State Key Laboratory of Turbulence & Complex Systems, College of Engineering, Peking University, Beijing 100871, China

a r t i c l e i n f o

Article history:
Received 9 August 2014
Received in revised form
25 December 2014
Accepted 22 January 2015
Available online 17 April 2015
*This article belongs to the Fluid Mechanics

Keywords:
Square jet
Hot-wire
Reynolds number
Small-scale turbulence
Mean energy dissipation rate

a b s t r a c t

The effects of Reynolds number on both large-scale and small-scale turbulence properties are investigated
in a square jet issuing from a square pipe. The detailed velocity fields were measured at five different exit
Reynolds numbers of 8 × 103

≤ Re ≤ 5 × 104. It is found that both large-scale properties (e.g., rates
of mean velocity decay and spread) and small-scale properties (e.g., the dimensionless dissipation rate
constant A = εL/⟨u2

⟩
3/2) are dependent on Re for Re ≤ 3 × 104 or Reλ ≤ 190, but virtually become

Re-independent with increasing Re or Reλ. In addition, for Reλ > 190, the value of A = εL/⟨u2
⟩
3/2 in

the present square jet converges to 0.5, which is consistent with the observation in direct numerical
simulations of box turbulence, but lower than that in circular jet, plate wake flows, and grid turbulence.
The discrepancies in critical Reynolds number and A = εL/⟨u2

⟩
3/2 among different turbulent flows most

likely result from the flow type and initial conditions.
© 2015 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and

Applied Mechanics. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
c

Introduction Turbulent jets are applied in various industrial
mixing processes, e.g., dispersal and combustion. In these flows,
large-scale motions whose scale is close to global flow scale
contain most of the kinetic energy and dominate the transfer
of momentum, heat and mass, while the small-scale turbulence
spanning the dissipative and inertial ranges brings different
species together at the molecular level [1,2].

Previous investigations by Dimotakis [3,4] indicated that amix-
ing transition, beyond which the amount of mixed fluid become
Re-independent for Re > Recr and the flow becomes fully devel-
oped turbulence, occurs in jets and other shear flows. This can
be observed widely in turbulence. Here Recr is a critical Reynolds
number. Dimotakis claimed that, the fully-developed turbulence,
the existence of a range of scales (uncoupled from the large scales
and free from the viscosity effect) is a necessary condition. A
outer-scale Reynolds number Re = Uδ/ν > 10000–20000 or
a Taylor Reynolds number Reλ = ⟨u2

⟩
1/2λ/ν ≥ 100–140 is

required by the resulting fully-developed turbulent. Here u rep-
resents the longitudinal component of the fluctuating velocity,
λ ≡ ⟨u2

⟩
1/2

⟨(∂u/∂x)2⟩−1/2 and ν the kinematic viscosity. This
observation is supported by Fellouah and Pollard [5] and Mi
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et al. [6] in their investigations of circular jets. In addition, Mi
et al. [6] suggested that εmaybewell estimated by ε = A1⟨u2

⟩
3/2/L

for Re ≥ 10000 or Reλ ≥ 110 and ε = A2ν⟨u2
⟩/L2 for Re < 10000

or Reλ<110; here L is the integral length-scale of turbulence while
A1 and A2 are experimental constants.

Compared to circular jets, noncircular jets have been found
more effective in mixing with ambient fluid [7,8]. In the case of
square jets, Xu et al. [9] measured square jet flows emanating from
a long square tube using hot wire measurements in the range of
8000 ≤ Re ≤ 50000. They found that all the far-field rates of
the mean velocity decay and spread, and the asymptotic value of
the streamwise turbulent intensity, decrease as Re increases for
Re ≤ 3 × 104, while they become almost Re-independent for
Re > 3 × 104. However, Xu et al. [9] did not provide informa-
tion on the influence of Reynolds number on small-scale turbulent
properties of square jets. In this sense, is there any difference be-
tween the critical transition Reynolds numbers for large-scale and
small-scale turbulences in the square jet? In addition, the critical
Reynolds number in the square jet seems higher than that of circu-
lar jets. What is(are) the reason(s) for the critical Reynolds number
varying from flow to flow? To address these important questions,
we conduct the present study to investigate the effects of Reynolds
number on both large-scale and small-scale turbulent properties of
a square jet at five different Reynolds numbers between 8000 and
50000.
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Fig. 1. (a) Experimental setup and (b) 3D square jet nozzle exit, notations, and coordinate system. Uc/2 is the axial mean velocity at either Y1/2 or Z1/2 .
Fig. 2. Streamwise variations of (a) inverse centerline mean velocity Uj/Uc and (b) normalized half-width in the x–y plane Y1/2/De for Re = 8000–50000.
Content Detailed description of the present measurement is
referred to Xu et al. [9], only a brief version is provided here and
the data processing methods for small-scale turbulent statistics
are carefully introduced in Mi et al. [10]. The present square jets
were generated from a nozzle system whose schematic diagram is
shown in Fig. 1(a). The present facility consisted of a square duct
with the width of the square duct H = 2.5 cm, and the length
of approximately 2 m. The nominal opening area A = 6.25 cm2

and the equivalent diameter De ≡ 2(A/π)1/2 was approximately
2.82 cm. The mean streamwise velocity Uj at the center of the
square exit plane was varied over the range 4.2 ≤ Uj ≤ 26.4 m/s,
corresponding to a Reynolds number range 8 × 103 < Re <
5 × 104, with Re ≡ UjDe/ν. With fc = 20 kHz (an identical
cut-off frequency), velocity signals were low-pass filtered for all
measurements to eliminate excessively high-frequency noise and
to avoid aliasing. The voltage signals were then digitized on a
personal computer at fs = 40 kHz via a 12 bit A/D converter
and each record had a duration of about 80 s. The present study
corrected the spatial attenuation of the single wire due to the wire
length λw ≈ 1 mm using the procedure of Wyngaard [11], which
was developed in spectral space to account for the integration
effect on Fourier components of the velocity. To remove the effect
of high frequency noise, the present data were filtered using
the digital scheme of filtering high-frequency noise proposed by
Mi et al. [10,12]. In this context, the present study estimates ε
from hot-wire measurements of u(t), using the isotropic relation
ε = 15ν⟨(∂u/∂x)2⟩ together with modified Taylor’s hypothesis
∂u/∂x = (Uc + u)−1∂u/∂t , rather than U−1

c ∂u/∂t [13].
Figure 2 presents the streamwise variation of the inverse cen-

terline mean velocity Uc normalized by the exit centerline mean
velocity Uj, i.e., Uj/Uc and the normalized half width Y1/2/De in the
range of 8000 ≤ Re ≤ 50000. To quantitatively study the depen-
dence of Uj/Uc and Y1/2/De on Re, the well-known self-preserving
relations are applied, i.e.

Uj/Uc = [(x − xU)/De]/KU , (1)

Y1/2/De = KY [(x − xY )/De], (2)

where KU and KY are the jet velocity decay rate and spread rate, x
is axial downstream distance measured from the nozzle exit, and
xU and xY are the x-locations of the virtual origin of Eqs. (1) and (2).
Figure 3 shows the variations of the jet velocity decay rate KU and
spread rate KY with the Reynolds number. KU and KY significantly
depend on Re for Re ≤ 3 × 104, as demonstrated clearly in Fig. 3,
but appear to independent with further increasing Re. Thus, there
seems to be a critical Reynolds number of Recr = 30000 for the
large-scale turbulence in the present square jet flow.

To investigate the influence of Re on small-scale turbulence of
the present square jet, Fig. 4 presents the streamwise evolution
of the normalized dissipation rate ε∗

= εDe/U3
j in the range of
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Fig. 3. Re-dependence of the mean velocity decay KU and spread rates KY .

Fig. 4. Streamwise evolution of the normalized energy dissipation rate ε∗
=

εDe/U3
j . The data from Mi et al. [6] is also added for comparison.

Fig. 5. Dependence on Re of the prefactor Cε .

Re = 8000–50000. Clearly, as the jet flow develops downstream,
ε∗ decreases rapidly with downstream distance x and follows the
self-preserving relation of the mean energy dissipation rate in the
self-preserving circular jet [6], i.e.

ε∗
= ε(De/U3

j ) = Cε[(x − xε)/De]
−4, (3)
Fig. 6. Dependence of A = εL/⟨u2
⟩
3/2 on Reλ . Symbols: �–�, present square jet;

H, circular jet turbulence [6]; +, grid turbulence, compiled by Sreenivasan [14]; ⃝,
direct numerical simulation (DNS) of periodic box turbulence, compiled by Burattini
et al. [15]; �, wake flow [15].

where Cε is the prefactor, and xε is the virtual origin location. The
value of Cε can be determined by fittingmeasured datawith Eq. (3),
which is shown in Fig. 5. For Re ≤ 3× 104, as observed from Fig. 6,
the prefactor (Cε) of Eq. (3) increases with Re. By fitting the value
of Cε for Re ≤ 3 × 104, the relationship between Cε and Re is Cε ≈

3.91Re0.351. For Re > 3× 104, all the measured data of ε∗ becomes
constant and collapses virtually onto a single horizontal line with
Cε ≈ 150, suggesting that ε∗ becomes nearly independent of the
Reynolds number. Thus, the critical transition Reynolds numbers
for both large-scale and small-scale turbulence of the square jet
is the same, i.e., Recr ≈ 30000. However, this value is higher
than that in a circular jet, whose critical Reynolds number Recr is
about 10000, across which the jet turbulence behaves distinctly,
see Ref. [6]. In addition, it is worth noting that the normalized
energy dissipation rate ε∗ and the prefactor Cε are higher for the
present square jet than the circular jet measured in Mi et al. [6].
It indicates that the mean turbulent energy is dissipated at higher
rate and mixing is enhanced for the square jet, compared to the
circular jet.

Further, the results A = εL/⟨u2
⟩
3/2 estimated from the present

square jet flow for Re = 8000–50000 or Reλ = 54–316 are shown
in Fig. 6. A number of previous datasets for circular jet, grid turbu-
lence, wake flows, DNS of box turbulence are also added for com-
parison. It is interesting to note that the value of A deceases from
1.5 to 0.5, as Reλ increases from 54 to 190. For Reλ ≥ 190, the value
of A seems to asymptote to a constant value of 0.5, denoted by A∞.
In a circular jet, Mi et al. [6] found that, for Reλ < 130, A obviously
decreases notably with increasing Reλ, while A becomes nearly in-
dependent of Reλ at Reλ ≥ 130. Sreenivasan [14] checked the de-
pendence of A on Reλ over a greater range of Reλ through collect-
ing a number of previous datasets for grid turbulence produced by
biplane square meshes, and found that the critical Reynolds num-
ber Reλ,cr ≈ 50 for grid turbulence. For DNS of period box flow,
Reλ,cr seems to be about 200, see Fig. 6. The present results show
that the critical Reynolds number is unlikely to lie in just a narrow
range of Reynolds numbers as suggested byDimotakis [3] generally
for any turbulent flows. Figure 6 also demonstrates that A∞ differs
appreciably for various flows. Explicitly indicated on the plot are
A∞ ≈ 0.5 for the present square jet and DNS of periodic box tur-
bulence [15]; A∞ ≈ 0.7 for a circular jet [6] and plate wake [15];
A∞ ≈ 1.0 for the grid turbulence [14,16].

The above discrepancies inA∞ and critical Reynolds number are
most likely to result from the flow type and initial conditions [6].
This indicates that ⟨u2

⟩
3/2/L is not proportional to the rate atwhich
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energy transferred from the large-scale eddies [17]. Mazellier and
Vassilicos [18] indicated that the nonuniversal asymptotic of the
dimensionless dissipation rate constant A stems from its universal
dependence on the number of large-scale eddies, which strongly
varies from flow to flow. Compared to the smooth contraction
circular jet studied by Mi et al. [6] and wake flow in Ref. [15], the
long pipe square jet produces a power-law profile of the mean
velocity and a very thick fully-turbulent boundary-layer at exit,
thus resulting in the less large-scale eddies in the near field and
smaller A∞. Despite A∞ and Reλ,cr varying for different flows,
according to Fig. 6, A = ε L/⟨u2

⟩
3/2 in general decreases with

increasing Reλ until Reλ = Reλ,cr. For Reλ > Reλ,cr, there is a good
constancy of ε L/⟨u2

⟩
3/2, i.e., A = A∞ with almost constant of order

unity.
This study has successfully clarified by experiments the effects

of Reynolds number on both the large-scale and small-scale
turbulence properties from the transition region to the self-
preserving far field of a square jet. Consistent with the large-
scale properties (e.g., the centerlinemean velocity and half-width),
the small-scale properties (e.g., the normalized mean dissipation
rate) of the square jet have been found to significantly depend on
Reynolds number for Re ≤ 30000 or Reλ < 190, but weaken with
further increasing Re or Reλ. For Reλ > 190, the value of A =

εL/⟨u2
⟩
3/2 in the present square jet converges to 0.5, consistent

with the observation in DNS of box turbulence, but lower than that
in circular jet, grid turbulence and wake flows. The discrepancies
in A = εL/⟨u2

⟩
3/2 and critical Reynolds number among different

turbulent flows are most likely to result from the flow type and
initial conditions. Compared to the smooth contraction circular jet
and wake flow, the long pipe square jet produces less large-scale
eddies, thus resulting in smaller value of the asymptotic of the
dimensionless dissipation rate constant.
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