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The flow in the near-to-intermediate field of a jet emanating from a long square
pipe is investigated using hot-wire anemometry. The data include distributions of
the mean and high order turbulence moments over 8000 < Re < 50 000 along
the jet centreline. It is demonstrated that the far-field rates of the mean velocity
decay and spread, as well as the asymptotic value of the streamwise turbulent inten-
sity, all decrease as Re increases for Re ≤ 30 000; however, they become approxi-
mately Re-independent for Re > 30 000. It follows that the critical Reynolds number
should occur at Recr = 30 000. Attention is given to the exponents associated with
the compensated axial velocity spectra that show that the inertial subrange calcu-
lated according to isotropic, homogeneous turbulence emerges at x/De = 30 for all
Re; however, if the scaling exponent is altered from m = −5/3 to between −1.56
< m < −1.31 the “inertial” range emerges at lower values of Re and the exponent
is Re dependent. It is also found that the exponent agrees very well with Mydlarski
and Warhaft correlation m = (5/3)(1−3.15Rλ

−2/3), where Rλ is the Taylor Reynolds
number, obtained for turbulence decay behind a grid. C© 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4797456]

I. INTRODUCTION

The study of turbulent jets has become a common topic in turbulence. There are a number of
studies that have explored the effects of Reynolds number on the spatial evolution of the mean and
higher order statistics of jets that issue from round and non-round nozzles or orifices.

Recently, Fellouah et al.1 and Fellouah and Pollard2 investigated the effect of Reynolds number
on the near- and intermediate-field regions of a round nozzle jet using flying and stationary hot-wire
measurements. They considered the velocity spectra and turbulence length scale distributions in
the range of 6000 ≤ Reh ≤ 100 000 and explored the idea of mixing transition as proposed by
Dimotakis.3 They found that the mixing transition is highly spatial and Re dependent. They also
identified mixing transition through the emergence of an inertial subrange based upon compensated
axial velocity spectra.

It is well known that inlet conditions affect higher order statistics in a round jet, see, for
example, Hussain,4 George,5 Xu and Antonia,6 Uddin and Pollard.7 A recent review paper may also
be consulted, Ball et al.8

From another perspective, the exit geometry of the jet flow has also been found to have an
important influence on the behavior of jet flow. Noncircular jets have been found more effective
to mix with ambient fluid than comparable circular jets, and thus they have been investigated
extensively in the literature.9–25 In the case of square jets in particular, it is known from large eddy

a)Authors to whom correspondence should be addressed. Electronic addresses: pollard@me.queensu.ca and
jcmi@coe.pku.edu.cn.
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simulation (LES) at laboratory scale Reynolds numbers that the vortex structure plays a significant
role in the enhanced mixing associated with these jets relative to unforced round jets, see Grinstein
and DeVore26 and Grinstein et al.11 The reason(s) for the enhanced mixing include the initial vortex
structures downstream near the exit of the square jet, which through simple Biot-Savart arguments
give rise to collapse of the vortex in the corner regions and eventual axis switching; there are other
spatial events that occur that present longitudinally oriented vortex structures, see Gutmark and
Grinstein,12 which in the case of round jets (called braids) have been shown to increase entrainment
and by inference the mixing, see Liepmann and Gharib,27 Citriniti and George,28 and McIlwain and
Pollard.29

The flow under consideration is no different to any jet flow: they are equally complex in flow
structure in the near-to-intermediate field, whether the jet is round, square or other shape. What is
fundamentally different between the current square jet arrangement and a round jet that issues from
a contraction nozzle is the lack of a true potential core in the former. In a round jet, the potential core
preserves the turbulence level and distribution derived from its upstream conditioning, which, based
upon the literature, is invariably presumed to be fine-scaled. However, there is enough literature that
demonstrates that both within the shear layers and beyond the potential core the turbulence is highly
three-dimensional irrespective of the initial condition.

In the case of square jets, there appears to be no data for flow emanating from a long square
tube, the flow inside of it gives rise to weak cross stream secondary flows induced by anisotropy of
the Reynolds stresses. Grinstein et al.11 considered a square pipe jet with a length to diameter ratio
of about 4.5, so it is unlikely that their flow was fully developed at the jet exit. It is hypothesized
here that the secondary flows should alter the evolution of the jet, as they would instill an additional
instability mechanism. That is, the inlet conditions would change with Reynolds number since it is
known that the strength of the secondary flow is Reynolds number dependent, see Pinelli et al.30 as
well as Brundrett and Baines.31 This also recognizes that jets are sensitive to inlet conditions, see,
for example, George5 and Uddin and Pollard.7 At the Reynolds numbers considered in this paper,
Kajishima and Miyake,32 used large eddy simulation of square duct flow at Re = 6200 and 67 400.
They compared their predictions to experimental data available at that time for Re = 42 000 obtained
by Melling and Whitelaw,33 83 000 by Brundrett and Baines,31 215 000 by Launder and Ying,34 and
250 000 by Gessner and Emery.35 At Re ∼ 65 000, they found agreement between experiment and
simulations of a variety of turbulence quantities along the duct wall bisector to be reasonable in
the core region, but less so as the corner was approached. Grinstein et al.11 considered the cases of
Re = 9300 and 42 000 but did not present data for cross-stream turbulence quantities. It is clear that
a jet that emanates from a long square duct will have imprinted on it a complex three-dimensional
flow structure that is probably more complicated than just the near wall turbulence structures formed
on the inside surface of a round jet contraction nozzle. Therefore, the reader of the current paper
must be cognizant of these differences.

In this paper, data are presented that in the first instance characterizes the mean and Reynolds
stress distribution in the near to intermediate field of a square jet that emanates from a long square
duct with sharp corners over 8000 < Re < 50 000. These data are further processed to highlight
changes in the compensated axial velocity spectra to show that the inertial subrange calculated
according to isotropic, homogeneous turbulence emerges at a Re = 20 000; however, if the spectra
scaling exponent is altered from a −5/3 to approximately −3/2, as suggested by Mi and Antonia,36

the “inertial” range emerges at lower values of Re. The implications of this on the mixing transition
are discussed.

The rest of the paper is arranged as below. Section II provides experimental details. In Sec. III,
the experimental results are presented and discussed. Finally, conclusions are provided in Sec. IV.

II. EXPERIMENTAL DETAILS

The present square jets were generated from a nozzle system whose schematic diagram is shown
in Fig. 1(a). Air was generated by a fan, which was mounted on anti-vibration pads, powered by an
electric motor and controlled by a variable frequency drive. Then, the airflow to the square jet was
initially conditioned in a settling chamber equipped with three air filters, a flow straightener, and
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FIG. 1. Schematic of the experimental arrangement (left) and three-dimensional square jet nozzle exit, jet notation and
coordinate system (right).

a wire mesh. The purpose of the settling chamber was to break up any large-scale structures and
reduce the overall turbulence intensity.

There are mainly three different types of square jet nozzles used in the literature: contractions,
orifice plates, and long ducts. In the case of long ducts, the lowest bulk Re considered here is higher
than the most recent direct numerical simulations.30 To enable future simulations to proceed, the
present facility consisted of a square duct that was 2.5 cm2 and approximately 2 m in length. The
nominal opening area A = 6.25 cm2 and the equivalent diameter De [≡ 2(A/π )1/2] was approximately
2.82 cm. The exit of the square duct was installed at the centre of an impermeable Perspex R© wall
of 3 m × 3 m. Thus, the entrainment into the jet occurred only from the lateral and spanwise
directions. The apparatus was situated in a large room. However, irrespective of the size of the room,
entrainment and jet development (boundary) conditions were restricted to axial locations where the
effect of confined spaces were deemed small; this was confirmed by ensuring that at the highest
Re numbers, mean axial centreline velocity decayed as x−1, where x is the downstream distance
measured from the nozzle exit (see Fig. 1(b)). The mean streamwise velocity Uj at the centre of the
square exit plane was varied over the range 4.2 ≤ Uj ≤ 26.4 m/s, which corresponds to a Reynolds
number range 8 × 103 < Re < 5 × 104, where Re ≡ UjDe/ν.

The measurements were taken between 0 ≤ x/De ≤ 40 using a single hot-wire anemometer
under isothermal conditions of ambient temperature 22.0 ◦C ± 0.1 ◦C. An Auspex single hot-wire
sensor was used (tungsten wire of diameter dw = 5 μm and length lw = 1 mm), with an overheat
ratio of 1.5. To avoid aerodynamic interference of the prongs on the hot-wire sensor, the present
probe was carefully mounted with prongs parallel to the square jet axis.

Due to the complex near-field flow field, the reader should be cautioned that the present results
maybe influenced by the limitations from the use of a single hot-wire. However, it is worth noting
that Mi and Antonia37 performed measurements of the mean and RMS velocities, as well as those
of their lateral gradients, using single and one or four X-wire probes, in the turbulent wake of a
circular cylinder. These authors demonstrated that the single hot-wire probe measured reasonably
well in the wake flow at x/d = 20 (here d is the cylinder diameter), obtaining nearly identical results
as from the X-wire probe (see their Figs. 2 and 5). The flow under present consideration is no more
highly three-dimensional than the wake flow. Accordingly, we are confident that the present single
hot-wire measurements should not result in statistics that would lead to wrong conclusions.

Calibrations of the hot-wire were conducted using a standard Pitot static tube connected
to a digital pressure transducer (Datametrics model 590D) prior to and after each set of mea-
surements. For each Uj or Red, different ranges of velocity were used in the calibration from
0.5 ∼ 3 m/s to 0.5 ∼ 30 m/s. The calibration data were fit using a 3rd order polynomial.
Both calibration functions were checked for discrepancies, and the experiments were repeated
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FIG. 2. Inflow conditions at x/De = 0.05 for different Reynolds numbers. (a) Normalized mean velocity; (b) turbulence
intensity. Note that the inset panel indicates location (Y) used for integral calculations (see Eqs. (4) and (5)).

if the velocity drift exceeded 0.5%. The average accuracy of each calibration was found to be
within ±0.2%.

Velocity signals were low pass filtered with an identical cut-off frequency of fc = 20 kHz for
all measurements to eliminate excessively high-frequency noise and to avoid aliasing. To obtain the
maximum possible signal-to-noise ratio, the mean voltages were sampled and removed from the
signals by means of the offset and the remaining fluctuations were amplified by a factor of 20 before
they were sampled. The voltage signals were then digitized on a personal computer at fs = 40 kHz
via a 12 bit A/D converter and each record had a duration of about 80 s. In addition, control of the
hot-wire position and data acquisition was accomplished using the National Instruments software
LABVIEW, as indicated in Fig. 1(a).

To remove the effect of high frequency noise, the present data were filtered using the digital
scheme of filtering high-frequency noise used by Mi et al.38, 39 This iterative scheme obtains “true”
values of the Kolmogorov time scale η and frequency fK by filtering the measured velocity signal um,
where the subscript m means “measured,” based on Eqs. (1)–(3) below. Suppose that the measured
dissipation rate εm can be expressed as

εm = ε[true dissipation] + εn[noise contribution] = γ ε (1)

and γ = (1 + εn/ε) > 1. Substituting (1) into the definition of the Kolmogorov scale, i.e.,
η ≡ (ν3/ε)1/4, leads to

ηm = [ν3/(γ ε)]1/4 = γ −1/4η, (2)

thus,

fK m = γ 1/4 fK , (3)

where fK ≡ U/(2πη) and U is the streamwise mean velocity.
The scheme uses (1)–(3) iteratively to “squeeze out” the noise contribution from um by filtering

um at new fKm. The principle is based on the fact that the noise imposes a significantly greater
influence on εm than on both ηm and fKm. For instance, when εm = 5ε, the resulting values of ηm and
fKm are ηm = 0.67η and fKm = 1.5 fK.

The direct measurement of ε requires measurements of all 12 gradients in ε (see, e.g., Ref. 40),
which are not realizable in the current experiments. Accurate measurement of any component of
ε requires a multi-sensor probe with exceptionally high spatial and temporal resolution to resolve
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the finest-scale or most-rapid fluctuations of velocity. In this context, the present study estimates ε

from hot-wire measurements of u(t), using the isotropic relation ε = 15ν 〈(∂u/∂x)2〉 together with
Taylor’s hypothesis 〈(∂u/∂x)2〉 = U−2〈(∂u/∂t)2〉. Here, u(t) was substituted for u1(t), which is the
streamwise velocity component.

III. PRESENTATION AND DISCUSSION OF RESULTS

A. Inlet conditions

To quantify the exit conditions of the jet, the mean and RMS velocities (U, u′ = 〈u2〉1/2) were
measured for each Re at x/De = 0.05 in the spanwise direction over the range 0 ≤ y/H ≤ 0.55, where
H is the width of the square duct. Spanwise profiles of U/Uj and u′/Uj are presented in Figs. 2(a) and
2(b), respectively. In all cases, approximate power law mean exit velocity profiles were obtained.
As Re was increased from 8000 to 50 000, the dependence of the mean axial velocity exit profile
on Re is not obvious. A plot of the mean velocity profile at Re = 8000 and 50 000 (see Fig. 2(a),
inset) shows that the mean velocity profile of Re = 50 000 is higher than that of any other Re in
the region of 0.5 < y/H < 0.55. In addition, the mean velocity profile tends to follow a 1/7th power
law profile with increased Re. However, there is a strong Re dependence of the exit flow on the
distribution and magnitude of the turbulence intensity, Fig. 2(b). The central portion and the peak
value of u′/Uj in the shear layer both decrease with Re. In the central portion, u′/Uj decreases from
0.045 to 0.027, and the peak value of u′/Uj reduces from 0.155 to 0.09. This trend coincides with
the finding of Deo et al.41 for a plane jet. The change in the initial velocity profiles due to the Re
variation are expected to cause different downstream development of the flow features in each jet
flow. For example, Kajishima and Miyake32 reported marked changes in the distribution of the mean
streamwise and secondary flow intensity along the square duct bisector using LES at Re = 6200
and Re = 67 400; while these early LES results are not conclusive, they do suggest that the current
results may be influenced in the very near field by these changes in initial conditions.

Here, the displacement thicknesses (δ) and momentum thickness (θ ) of the boundary layer are
calculated approximately from the mean velocity profiles and the momentum integral equations,
viz.,

δ =
∫ Y

0
(1 − U/U j )x=0.05De dy, (4)

θ =
∫ Y

0
U/U j (1 − U/U j )x=0.05De dy. (5)

Here, Y is the integral upper limit. Figure 3 presents the above parameters calculated from the
profiles using “best-fit” spline curves and numerically integrating Eqs. (4) and (5) with different
integral upper limit. Their normalizations are made by 0.5 H, which shows the relative magnitude
of these thicknesses with respect to the pipe size. As shown in Fig. 3, δ obviously increases as the
integral upper limit increases from 0.5 H to 0.53 H. However, the upper limit has little effect on θ ,
which converges for Y ≥ 0.52 H. In addition, it is interesting to note that δ decreases as Re increases,
while θ approaches its maximum value at Re = 3 × 104. This is different to that of a plane jet,
where both δ and θ monotonically decrease as Re increases before tending toward a constant value
for Re > 104 (approximately).41 Note there is no uniform region in the exit mean velocity profile of
a square jet. The mean velocity decreases as the distance from the centreline increases. As shown
in Fig. 2(a), the mean velocity profile is higher in the region of 0.4 < y/De < 0.5, as well as lower
in the region of 0.2 < y/De < 0.4 for higher Reynolds number. This causes θ to not monotonically
decrease as Re increases. Figure 3 also indicates small variation in the magnitudes of δ and θ for
different Reynolds numbers, which suggests that the mean exit velocity has weak dependence on
Reynolds number.
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FIG. 3. Dependences of (a) displacement thicknesses (δ) and (b) momentum thickness (θ ) on Reynolds number and integral
upper limit (Y), Figure 2 and Eqs. (4) and (5).

B. The mean velocity field

Figure 4 presents the streamwise variation of the inverse centreline mean velocity Uc normalized
by the exit velocity Uj, i.e., Uj/Uc for 8000 ≤ Re ≤ 50 000. In the initial region, x/De < 5 (note
that the use of the term “potential core” is not used here given the secondary flows emanating
from the square duct), no significant Red-dependent variation in Uc is detected. However, farther
downstream, the centreline mean velocity decays approximately inversely and linearly with axial
distance. The decay rate of the mean velocity depends significantly on Re. The influence of Re on
the flow sufficiently downstream maybe quantified using

Uc/U j = KU [(x − xU )/d]−1. (6)

Here, the constant KU is the slope of the linear curve of Uj/Uc, and xU is the x-location of the virtual
origin of (6). This relation becomes valid beyond x/De > 16; this location decreases with increasing
Re. Significantly, the present data for different Reynolds numbers appear to converge asymptotically
onto a single curve at Red ≥ 3 × 104. Figure 5 demonstrates that the Re dependence of Uc embodied
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FIG. 4. Streamwise variations of Uj/Uc for Re = 8000 ∼ 50 000.
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in KU is significant for Re ≤ 3 × 104 but weakens with further increase of Re. It follows that there
appears to be a critical Reynolds number of Recr = 30 000 above which the asymptotic far-field
value of KU will be independent of Re. The dependence of xU on Re follows a similar trend to that
of KU.

The lateral profiles of U/Uc at selected downstream locations for Red = 8000–50 000 are
presented in Fig. 6. Here, the y-coordinate is normalized using the velocity half-width Y1/2 where
the mean velocity is half the centreline mean velocity, i.e., 0.5Uc. As expected, the velocity profiles
become self-similar closer to the nozzle exit as the Reynolds number increases. For instance, self-
similarity appears to be attained at x/De > 10 for Re = 5 × 104 and at x/De > 20 for Re = 8 × 103.
The self-similar velocity profiles conform closely to a Gaussian distribution U/Uc = e−(y/Y1/2) ln 2.

The influence of Re on the mean spread rate of the square jet is assessed from the downstream
variation of the half-width Y1/2. The magnitude of Y1/2 reflects the overall rate of the spread.
Figure 7 indicates that the half-widths vary linearly with x for x/De > 10 for all Reynolds numbers.
This linear variation may be represented by

Y1/2/De = KY [(x − xY )/De], (7)

where KY reflects the jet-spread rate and xY is the x-location of the virtual origin. Figure 8 demonstrates
that as Reynolds number increases from 8000 to 50 000, KY decreases asymptotically from about
0.11 to 0.08, which is consistent with that of KU (Fig. 5). Taking them together, it is concluded
that an increase in Re leads to reduced entrainment of the jet in the far field. This agrees with
Deo et al.41 for a plane jet. However, for the present square jet flow, the variation of Y1/2 does not
exhibit a local peak in the very near field region, the appearance of which is normally associated as
evidence of axis-switching phenomenon for square jets.42, 43 Grinstein et al.11 found no evidence of
axis switching for jets emanating from their short-pipe square jet. Thus, the axis-switching is not
likely to occur in the present square jet that issues from a long pipe. The main difference between
the present jet flow and others investigated previously11, 43 is the nozzle type. For those jets from
contracting nozzles or orifice plates, the momentum boundary thickness at the exit plane is much
thinner than that from the long square duct. The thinner the momentum boundary thickness, the
easier it seems to produce large vortex rings.11 In the present jets, no obvious large vortex ring is
produced because of the non-uniform velocity profile at the exit plane (see Fig. 2(a)) and the thick
boundary layers.

Another significant point can be made from the data presented in Fig. 8. That is, similar to the
centreline velocity decay rate, the critical Reynolds number for the asymptotic far-field spreading
rate appears to occur at Recr = 30 000 above which the far-field spreading rate does not vary with
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FIG. 6. Lateral distributions of U/Uc for Re = 8000–50 000.
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FIG. 7. Streamwise variations of R1/2 /De for Re = 8000 ∼ 50 000.

Re. Correspondingly, as Re increases, the x-location of the virtual origin of the jet half-width (xY)
first decreases and before increasing beyond Recr = 30 000.

C. The fluctuating velocity field

Figure 9 presents data for the centreline evolution of the turbulence intensity (u′/Uc) at different
Reynolds numbers. Evidently, u′/Uc grows rapidly in the initial region, which is caused by high
local shear in the streamwise mean velocity. With increased distance from the exit, u′/Uc increases
gradually and appears to asymptote to a constant value (Ku) in the far field (that is, beyond x/De

= 40). However, the magnitudes of u′/Uc are Re dependent so that based on the averaged value of
u′/Uc over the region 30 ≤ x/De ≤ 40, the far-field Ku is seen to first decrease with Re and then
asymptote to Ku ≈ 0.25 for Red ≥ 30 000, see Fig. 10. Quinn and Militzer43 data are also added in
Fig. 11 for their case of Re = 184 000. Obviously, the asymptotic value of Ku for the present case
of Re = 50 000 tends to be larger than that of Quinn and Militzer.43 This is expected since their Re
is much higher and Ku should decrease with Re (Fig. 10). Also of note, as will be presented next,
the centreline values have yet to reach their far-field values as the high stress that is developed in the
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FIG. 8. Dependence of the spreading rate (KY) and virtual origin (xR/De) on Red.
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FIG. 9. Normalized streamwise RMS velocity u′/Uc along the centreline.

near field shear layers has not yet diffused to the centreline. Despite this, it appears once again that
we can conclude that the critical Reynolds number is Recr = 30 000 above which the asymptotic
far-field value of Ku is independent of Re.

Figure 11 presents the lateral distributions of turbulent intensity (u′/Uc) at selected down-
stream positions for all Reynolds numbers considered; the y-coordinate is normalized with the
half-width Y1/2. Obviously, the turbulence intensities in the shear layer are larger than those along
the centreline. In the far field, the flow develops toward equilibrium where the maximum value
of u′/Uc across the jet has not reached the centreline. For each Reynolds number, the profiles of
u′/Uc at different downstream positions (x/De) gradually converge to a self-similar profile. For
instance, the self-similarity is attained at x/De > 25 for Red = 5 × 104 and at x/De > 35 for
Red = 8 × 103. Compared with lateral distributions of the mean velocity, see Fig. 6, the profiles of
turbulence intensity indicates that further development is required to reach self-similarity.

Figures 12 and 13 provide the centreline evolution of skewness and flatness factors of the
longitudinal velocity fluctuations, S [≡〈u3〉/(〈u2〉)3/2], F [≡〈u4〉/(〈u2〉)2] for Re = 8 × 103∼5 × 104.
These provide some measure of departure from a Gaussian probability density function (PDF) of u.
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FIG. 10. Re dependence of the asymptotic value of turbulence intensity.
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FIG. 11. Lateral distributions of u′/Uc for (a) Re = 8000, (b) = 12 000, (c) Re = 20 000; (d) Re = 30 000, (e) Re = 50 000.
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FIG. 16. Dependence of the Strouhal number St = fpDe/Uj on Re. Note that the values of the St are those of f∗ that correspond
to peaks of �u between x/De = 2 and x/De = 5 as indicated in Fig. 14 by the dashed lines.

Both S and F were estimated from a large data set to achieve convergence of the PDF. During
measurements a voltage offset was applied to the analog-to-digital range of the A/D board to ensure
that neither factors were truncated due to clipping of the tails of the PDFs.

Both factors vary dramatically in the near-field region (x/De < 20) presumably due to the
dominance of the large-scale coherent motions in the near-field region; see Grinstein11 and Grinstein
et al.26 Farther downstream from the exit, both S and F become highly non-Gaussian, and display
local maxima in the vicinity of x/De ∼ 6 and then recover to their asymptotic values in the far-field
region (x/De ≥ 30). In general, as Re is increased, the near-field maxima increase in magnitude and
their x-locations shift slightly downstream. More coherent motions in the shear layers are evidenced
by less random fluctuations, i.e., by more departures of the PDF from the Gaussian distribution and
thus of S and F from their Gaussian values of 0 and 3, respectively. In addition, S and F approach
their respective asymptotic values, S∗and F∗ at x/De ≥ 30 for all values of Re. Here, S∗and F∗

are obtained based on the averaged value of S and F over the region 30 ≤ x/De ≤ 40. However,
both S∗and F∗ exhibit a consistent, albeit weak, dependence on Re. Overall, as Re is increased, S∗

decrease, while F∗ increase (see Fig. 14); namely, the randomness of the jet, as expected, increases
with increasing Re.

Figure 15 presents the centreline evolution of one-dimensional spectrum of the fluctuating
velocity, �u, from x/De = 1 to x/De = 10, where �u is defined by

〈
u2

〉 = ∫ ∞
0 �ud f and f denotes

the frequency. The normalized frequency is defined as f ∗ = fY1/2/Uc. The vertical dashed lines in
the figure indicate the broad peaks in �u at x/De = 2∼5. Figure 16 demonstrates that very close
to the nozzle at x/De < 1 no fundamental peaks can be identified in the range of 0.3 ≤ f* ≤0.5.
In the current experiment, data were not taken off the centreline that would enable jet shear layer
or preferred instability modes to be identified. Farther downstream at x/De ≥ 2, such peaks, albeit
weak, are present, which suggests that vortices do exist within the shear layers and their presence
is detected on the centreline. The coherent structures in the shear layer probably occur weakly and
infrequently because of the thick boundary layer in the exit plane, see Grinstein et al.11 The gradient
of the mean velocity in the shear layer is also probably not high enough to produce large-scale
coherent structures. With increased distance downstream, the spectral peaks dissipate so that there
no peaks in �u are detected in the low frequency region. The spikes in the spectra in Figs. 15(b)–
15(e) at the upper end of the frequency noise range are due to electronic (including shot, flicker,
burst, etc.) noise.

Figure 16 presents the Re dependence of the Strouhal number St [≡ fpDe/Uj] that correspond
to the vertical dashed lines associated with f∗ in Fig. 15. It appears that an increase in the Reynolds
number from Re = 8000 to Re = 30 000 causes St to decrease, which implies some dependence on
Re. Figure 16 also indicates that St is nearly independent of Re when Re ≥ 30 000.
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FIG. 17. Evolution of the centreline �u obtained at x/De = 20, 30 and 40 in the form of f�u vs log (fY1/2/Uc) for
(a) Re = 8000, (b) Re = 12 000, (c) Re = 20 000, (d) Re = 30 000, (e) Re = 50 000.
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Now, the far-field u-spectra, �u, and their centreline evolution are considered for different
Reynolds numbers. Figures 17(a)–17(e) present the far-field data of �u, respectively, for Re =
8000–50 000, obtained at x/De = 20, 30, and 40 on the centreline, in the form of f �u vs log (f
Y1/2/Uc) so as to identify the frequency (subscript “p”) corresponding to the peak in �u due to the
presence of the far-field coherent structures and their quasi-periodic passage. The dimensionless
frequency f∗p = fpY1/2/Uc versus Re is presented using Fig. 18. Similar to the exit Strouhal number
St reported in Fig. 16, f∗p decreases fairly significantly (by about 30%) as Re increases from 8000 to
30 000 but changes little for Re ≥ 30 000. It is evident that the spectral peak of the turbulent kinetic
energy is centred around f∗p = fpY1/2/Cu ≈ 0.5∼0.8 (depending on Re).

The centreline one-dimensional spectra of the fluctuating velocity (�u) for x/De = 30 are
presented in Fig. 19 for the five values of Re considered here. The solid and dashed lines correspond
to ∼f−3/2 and ∼f−5/3, respectively. It appears that all these spectra exhibit a power-law region,
i.e., �u ∝ f−m, over a certain range of f; clearly, as expected, the range over which f spans,
widens as Re increases. Here, the frequency can be transferred to the streamwise component of the
wavenumber (k1) as k1 = 2π f/Uc. Theoretically, �u(k1) = Cε2/3k1

−5/3 and this applies, according
to Kolmogorov, at “sufficiently large Reynolds number.” Sreenivasan44 introduced a modification
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FIG. 19. Reynolds number dependent spectra of the centreline u measured at x/De = 30.
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to the one-dimensional spectra, �u(k1) = Cε2/3k1
−5/3(k1η)5/3−n1 and for the case of grid generated

wind tunnel turbulence data, Mydlarski and Warhaft45 noted the dependence of the k1-exponent on
the Taylor Reynolds number, Rλ, that is,

n1 = (5/3)(1 − 3.15R−2/3
λ ). (8)

Here, n1 is identical to the exponent m, i.e., n1 = m. Moreover, they noted the dependence of C on Rλ

too. Gamard and George46 noted E(k) = Ck−5/3+μ, where μ and C are Reynolds number dependent.
Gamard and George46 were able to demonstrate that a near-asymptotic analysis was able to capture
the effects found by Mydlarski and Warhaft.45

Figure 20 presents the compensated spectra for the jet on the centreline at x/De = 30 for the
Reynolds numbers considered. The power-law exponent (m) is not 5/3 for the current experiment,
rather m = 1.31 ∼ 1.56. That is, the exponent increases slightly with Re. Interestingly, a further
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FIG. 21. The Rλ dependence of the power-law exponent of �u, all for x/De = 30.
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check using Fig. 21 reveals that the m-Rλ relationship for the present square jet follows that obtained
by Mydlarski and Warhaft45 for grid generated turbulence, i.e., Eq. (8). Given that the two flows
are totally different, this relation may be generic for any turbulent flow where the turbulence is not
intermittent. In other words, the power-law exponent, if present, of the frequency spectrum of u from
any flows should depend on Rλ in the quantitative form of m = (5/3)(1−3.15Rλ

−2/3).

IV. CONCLUSION AND RECOMMENDATION FOR FURTHER WORK

The present study performed hot-wire measurements at the exit Reynolds number Re = 8 × 103

∼ 5 × 104 to examine the Re dependence of the downstream development of the turbulent jet from
a long square duct. Within this Re range, significant dependences were found in the mean velocity
decay rate and half-width, and in the evolution of turbulent intensity and skewness and flatness
factors of the fluctuating velocity. More specifically, the main findings of the influences of Re over
the range of the present investigation are summarized as follows:

(1) For Re ≤ 30 000, the far-field asymptotic rates of the mean velocity decay and spread, the
asymptotic value of the streamwise turbulent intensity, as well as the near-field and far-field
Strouhal numbers, all decrease monotonically as Re increases. However, when Re > 30 000,
all the above asymptotic values do not change appreciably with Re. It follows that the crit-
ical Reynolds number beyond which no further changes in jet behavior should occur at
Recr ∼ 30 000.

(2) As Re is increased, the asymptotic value of the u skewness decreases while the asymptotic
value of the flatness increases. That is, the far-field randomness of the jet increases with
increasing Re.

(3) The power-law exponent (m) of the u spectrum on the jet centreline follows the relation
m = (5/3)(1−3.15Rλ

−2/3) obtained by Mydlarski and Warhaft45 for the grid generated turbu-
lence. This finding suggests that the m-Rλ correlation of Mydlarski and Warhaft45 may apply
to other turbulent flows removed from walls.

The above dependence on the Reynolds number for Re < 30 000 are believed to reflect changes
in the flow conditions at the nozzle exit plane and thus changes in the downstream underlying (large-
scale) flow structures. For Re ≥ 30 000, all the changes appear to become insignificant. Nevertheless,
this critical Reynolds number is much higher than that (≈10 000) found, e.g., Ref. 3 for round jets
from a smooth contracting nozzle, where the initial flow is laminar-like with a much lower overall
turbulence intensity (<1% in general) than those of the present square jets (>5%). Why does such a
great difference take place in the two turbulent jets? Is it because a higher value of the exit turbulence
intensity and other different initial parameters in the square jet from a long pipe delay the occurrence
of turbulence mixing transition (if any) proposed by Dimotakis3 or widen the transition band? It is
recommended that further work be done to confirm these suppositions.
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