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A B S T R A C T   

Ocean wave energy is attracting more and more attention from researchers on observation of its clean and sus
tainable properties. Significant wave height (SWH) is one of the key wave parameters, making accurately fore
casting the SWH important for coastal/ocean engineers. In this paper, we propose a new framework for forecasting 
the SWH. The data were decomposed and reconstructed, and the lag features length of the input data were 
adaptively optimized using the Bayesian optimization (BO) algorithm. A new paradigm for end-to-end dynamic 
modeling (EEDM) forecast is then proposed, where data are modeled and forecasted separately for buoys at various 
geographical locations, with automated machine learning (AutoML) as the back-end modeling support for the 
paradigm. It was also trained and tested on nine buoys from NOAA National Data Buoy Center, which are located at 
sites with different water depths. The results show that the forecast framework has provided reliable forecasts. We 
also discussed the reasons for the buoy with the worst forecast in terms of model interpretability and data quality. 
Finally, we compared three deep learning models (simple recurrent network, long short-term memory and gate 
recurrent unit) and three machine learning models (principal component regression, support vector machine and K- 
nearest neighbor). The comparisons indicate that the AutoML turns out to be the best.   

1. Introduction 

The ocean is a treasure trove of resources for sustainable develop
ment, with a variety of renewable energy sources such as wave energy, 
wind energy, tidal energy and ocean thermal energy. With the charac
teristics of high energy density and good consistency, wave energy is 
considered as a promising renewable energy in the ocean. Significant 
wave height (SWH), mean wave period (MWP), and mean wave direc
tion (MWD) are important parameters defining wave characteristics. 
Accurate forecast of the SWH is of great significance to marine industry 
and ocean engineering. Wave (along with wind) is the dominating 
power, which determines the design and safety of almost all marine 
structures (especially floating platforms). Metaocean forecast will feed 
reliable input data to the dynamics. For wave energy density develop
ment, the SWH is basically the most important parameters for not only 
the survivability but also the efficiency. Inputting parameters such as the 
SWH can perform theoretical calculation and trend prediction of wave 
energy (Yang et al., 2022). Wave energy converter (WEC) needs to 

convert as much mechanical energy from the environment into elec
tricity as possible (Wu et al., 2022). The SWH information can adjust the 
operating state of the WEC and improve the power generation efficiency. 

The current methods for forecasting the SWH can be categorized into 
hard methods (empirical, numerical models), soft methods (machine 
learning, deep learning) and hybrid methods. Initially, numerical forecasts 
were based upon energy balance equations and numerical computations to 
build wave forecast models. The trending models in recent years include 
the WAVEWATCH III model (Tolman, 2009, p. 14) and the simulation 
waves near shore (SWAN) model (Booij et al., 1999). For example, Umesh 
et al. proposed SWAN-SWASH framework to forecast wave height in the 
Bay of Bengal region (Umesh and Behera, 2021). Panfilova et al. applied 
the WAVEWATCH III model to numerically simulate waves in the Persian 
Gulf (Panfilova et al., 2021). At the same time, local meteorological cen
ters have also launched numerical models/systems. For example, the Met 
Office uses the Nucleus for European Modelling of the Ocean (NEMO) 
community model for ocean forecasting (Storkey et al., 2010). The Euro
pean Centre for Medium-Range Weather Forecasts (ECMWF) launched the 
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fifth-generation real-time seasonal forecasts system (SEAS5) for atmo
spheric and ocean forecasting (Johnson et al., 2019, p. 5). Japan Meteo
rological Agency/Meteorological Research Institute Launches Coupled 
Prediction System version 2 (JMA/MRI-CPS2) for Atmosphere-Land- 
Ocean (Takaya et al., 2018). Such methods, while achieving more accu
rate forecasts in some seas, require highly sophisticated computational 
resources and more reliable wind farm data as input. 

Machine learning is a data-driven approach that focuses only on the 
data relationships that exist between inputs and outputs. The ability of 
nonlinear mapping and adaptive learning allows machine learning to 
demonstrate their advantages. For instances, Scott et al. proposed to 
forecast the SWH using a machine learning framework instead of the 
SWAN numerical model (James et al., 2018). Demetriou et al. developed a 
hierarchical machine learning classification method to short-term forecast 
the SWH in the southern coasts of Cyprus region (Demetriou et al., 2021). 
Buenoa et al. forecasted the SWH using an extreme learning machine 
model optimized by genetic algorithm (Cornejo-Bueno et al., 2016). 

Conventional machine learning usually requires complex feature 
engineering, and it can only perform single-step forecast when external 
forecast strategies are not used (Bontempi et al., 2012). Deep learning is 
a subcategory of machine learning that supports a sequence-sequence 
input-output structure and thus supports direct output of multi-step 
forecast. It also has a strong advantage of feature extraction, yet it re
quires a large amount of data to improve the learning ability. For in
stances, Fan et al. used long short-term memory network for multi-step 
forecast of the SWH and combined it with the numerical model SWAN 
(Fan et al., 2020). Quach et al. employed deep neural network to fore
cast the SWH from synthetic aperture radar and compared it with data 
from the altimeter (Quach et al., 2021). Yang et al. forecasted the SWH 
data based on convolutional neural network and introduced position 
coding (Yang et al., 2021). All these SWH forecast models usually yield a 
single algorithm/model, i.e., by generalizing the model performance to 
face a large number of study subjects (buoy sites). 

However, there is no single algorithm that can consistently maintain 
the best performance across all different sites (Sun et al., 2021). This can 
be attributed to two reasons. One is that the data possesses spatial het
erogeneity (data features change in time and space), and the other is that 
a single model itself has limited hard-architectural capabilities (even 
after hyperparameters optimization). In face of large numbers of sites (e. 
g., forecasts on a global scale), it is difficult for a single algorithm 
research paradigm to meet the large-scale training performance. 

Compared with machine learning and deep learning, automated ma
chine learning (AutoML) is a novel modeling paradigm that automates the 
construction of multiple algorithmic models for training and hyper
parameter optimization within a given computational resource and 
returns the best model (He et al., 2021). The advantages of high automa
tion and the possession of multiple model candidates have led to its gradual 
application in other fields. Sun et al. reconstructed the total GRACE water 
storage by H2O-AutoML (Sun et al., 2021). Guo et al. analyzed urban flood 
warning by using tree-based pipeline optimization tool (Guo et al., 2022). 
Zeng et al. constructed a method to identify invasive ductal carcinoma 
based on Google cloud AutoML (Zeng and Zhang, 2020). 

In addition, for the data-driven model described above, the quality of 
the input data can affect the model performance. Incorporating irrelevant 
features into training, or expelling critical features from training can affect 
the training of the model. For example, in machine learning, smoothed 
data after filtering and denoising could usually improve the learning 
ability of the model. In deep learning, feature scaling (normalization or 
standardization) is performed on the data to better fit the model or to 
optimize the algorithm’s preferences. For example, data normalization can 
speed up the convergence of gradient descent algorithms. The SWH time- 
series forecast can be converted to a supervised regression problem. In 
multi-step forecast, direct use of timestamp features does not bring valid 
historical information. The sliding window method is usually used to 
create lag features dataset, which is the historical multi-step information, 
as the input information. How to reasonably select the length of historical 

information as input has been an often neglected but critical issue. It is 
usually determined empirically or using fixed multiples (Huang and Dong, 
2021; Mahjoobi and Adeli Mosabbeb, 2009; Rana and Rahman, 2020; 
Yang et al., 2021), however, this inflexible treatment tends to lead to 
models that do not capture valid information. 

Therefore, to address the above issues, we make the following at
tempts: on observation of the previous modelling limitations of using a 
single model, we propose a new paradigm of end-to-end dynamic 
modeling (EEDM) for forecast, which models and predicts data sepa
rately for buoys on various geographical locations. For the models, it is 
also not restricted to a particular kind of algorithm, but utilizes a pool of 
stand-by models. Automated machine learning serves as the back-end 
support for the paradigm, which adaptively selects the best model al
gorithm based on the performance on the validation data. For the lag 
length of the input data, we treat it as a black-box function and apply a 
Bayesian optimization (BO) algorithm for automatic search to explore 
the value closest to the global optimum in as few attempts as possible. 
Finally, in terms of the SWH feature smoothing, we invoke for the first 
time a regression-based data decomposition approach. The paper is 
significant in that it constructs a workflow for forecasting the SWH using 
automated machine learning, emphasizing the new concept of end-to- 
end modeling. What’s more, this paper introduces a BO algorithm to 
optimize the input lag features length. Section 2 describes the data 
sources and details of the research methodology. Section 3 presents the 
related results and discussion and Section 4 concludes the whole paper. 

2. Methods 

2.1. Data sources and pre-processing 

The reanalysis data, satellite altimeter data and buoy data are the 
basic sources of the SWH. In this paper, we only use the measured data 
from the buoy, for satellite altimeter data and reanalysis data are pro
cessed by post-computation. We have chosen 9 buoys with different 
water depths. The buoy data were obtained from the national data buoy 
center (Meindl and Hamilton, 1992), accessed on March 2, 2022 (https: 
//www.ndbc.noaa.gov). The standard meteorological data in the buoy 
sites include 14 variables such as significant wave height, wave energy 
period, sea surface temperature, and mean wind speed, and the data are 
recorded at 1-h intervals. Here we use only the SWH data, without 
interpolating the missing values, in order to use the raw buoy data as 
much as possible. At the same time, each buoy is regarded as an inde
pendent object, and each buoy is only allowed to obtain its own his
torical SWH data. The buoy geolocation and data information are 
presented in section 3.1 Study area. 

2.2. Data reconfiguration smoothing 

Data from buoy sensors are susceptible to noise. Smoothing the data 
can reduce the complexity in the raw data, making it easier to identify 
the curvilinear features of the data. STR is an R package used to 
decompose the data (Dokumentov and Hyndman, 2021). And it is a 
seasonal-trend decomposition method using regression, combining 
components in an additive manner. In contrast to the conventional STL 
(seasonal and trend decomposition using Loess) method, STR takes into 
account external factors affecting the seasonal pattern of the data. It is 
able to combine multiple external regressions into the decomposition 
process. The AutoSTR function in STR also supports automatic selection 
of the decomposition parameter lambda using the default fivefold 
cross-validation. The decomposition is performed using the best com
bination explored by AutoSTR. The data reconfiguration smoothing 
details are presented in section 3.2 Forecast framework. 

2.3. Bayesian optimization 

For a black-box optimization problem, Bayesian optimization finds the 
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value that minimizes or maximizes the objective function (black-box 
function) in less attempts. This is building alternative functions (proba
bilistic models) based on the results of a priori evaluation. In simple terms, 
Bayesian optimization are probability distribution-based, iterative 
running optimization algorithms. The prior function and the acquisition 
function are the two core processes. Prior function models are commonly 
used in Gaussian processes, neural networks, and generalized linear 
models. Gaussian processes and neural networks are non-parametric 
models, in which the parameters will increase with the data augmenta
tion. Generalized linear model is parametric models with the constant 
parameters. For the acquisition function (which is generally constructed 
by the posterior distribution of the objective function), it balances the 
exploration (making the next sample point as far away from the known 
point as possible) and exploitation (making the next sample point as close 
to the known point as possible) of the sampling process. The commonly 
used acquisition functions are probability of improvement (PI), excepted 
improvement (EI), and GP upper confidence bound (GP-UCB). R package 
ParBayesianOptimization (version 1.2.4) is used to implement the 
Bayesian optimization process (Snoek et al., 2012; Wilson, 2021). 

2.4. Automated machine learning 

Automated machine learning represents a new paradigm for optimal 
algorithm selection, model structure selection, and hyperparameter 
tuning which addresses some of the most challenging problems in ma
chine learning applications. AutoML is able to train multiple stand-by 
models and select the best combination performing of algorithm and 
parameters (hyperparameters). The automated modeling paradigm is 
able to take into account more data heterogeneity than using a 
straightforward single model, while it is difficult for a single model to 
achieve uniform outstanding performance across data. 

In this paper, we use the H2O-AutoML algorithm (version 3.36.1.1) 
to build automated machine learning processes (LeDell and Poirier, 
2020). Due to the fact that in recent studies it has been shown that 
H2O-AutoML leads in automated machine learning, especially in su
pervised regression problems (Ferreira et al., 2021; Truong et al., 2019). 
Stand-by models includes distributed random forest (DRF), extremely 
randomized trees (XRT), generalized linear model (GLM), gradient 
boosting machine (GBM), extreme gradient boosting (XGBoost), deep 
learning (DL) and stacked ensemble models (SE). DRF is based on a 
bagging integrated learning algorithm with multiple disparate and un
related decision trees, and is often used as a classifier with high accuracy 
for training and forecasting samples (Breiman, 2001). XRT is a modifi
cation of DRF, which randomly selects the best bifurcation attribute 
instead of traversing all feature attributes and selecting the form with 
the largest bifurcation value to bifurcate, so the generalization ability of 
XRT algorithm will be higher than DRF (Geurts et al., 2006). GLM is an 
extension of simple least squares regression (OLS) that is able to 
combine several different predictor variables to forecast the dependent 
variable, directly exploring the quantitative relationship between the 
dependent and independent variables, and also relaxing the assumptions 
in OLS (Faraway, 2016). GBM trains weak learners to learn the mapping 
of features to residuals, and each new iteration is reducing the residuals 
from the previous iteration, which is similar to gradient descent, so that 
the model will proceed in the direction of the fastest residual reduction 
(Friedman, 2001). XGBoost is an algorithm that supports parallel 
computing optimized on the basis of gradient boosting decision tree 
(GBDT) (Chen et al., 2015). While the general boosting algorithm is to 
boost the underlying weak classifiers to strong classifiers, XGBoost adds 
a regular term related to the number of leaf nodes to the decision tree 
algorithm, adjusts the parameters, controls the complexity, and prevents 
extreme cases such as overfitting. DL is able to automatically extract 
features from the training sample data, but relies on the amount of the 
data. In H2O-AutoML, SE includes two categories, one integrates all 
trained models and another integrates only the best performing models 
of each algorithm. Given the computational resource limit (maximum 

training time), H2O-AutoML automatically completes the training and 
hyperparameter optimization of the stand-by models. The metric for 
model early stopping is set to mean residual deviance and the metric for 
final model ranking is set to mean absolute error (MAE). This is because 
we do not want the models to over-consider or fit certain extreme var
iations in the data (Yang et al., 2021). 

Our previous research attempted to create a timestamped feature ma
trix, which was then fed into the model for training. In this way, the features 
obtained by the model only have timestamps. In the multi-step forecast 
scenario, the model needs to obtain more features, especially the historical 
data of the SWH. In this paper, we try to create a dataset using a sliding 
window method (convert time series forecast to a supervised learning 
problem). At the same time the raw SWH data is not subjected to any 
additional processing, which has the advantage of preserving the original 
scale and features of the SWH data (Pirhooshyaran and Snyder, 2020). 
Sliding window data with missing values at any point are removed. The 
window data after removing the missing values are sequentially split into 
training dataset, tuning dataset, validation dataset and test dataset in the 
ratio of 6:1:1:2. Among them, Tuning dataset is used for validation data for 
training within H2O-AutoML. It is worth noting here that there are different 
numbers of missing values in different buoys, so we did not divide the data 
directly in proportion to the length of time, which would avoid an imbal
ance between different kinds of data. Also, the model does not get any in
formation about the test dataset during the training process. The test 
dataset is only used during model forecast and interpretation. The default 
K-Fold cross-validation of H2O-AutoML is not used because it is not 
applicable to spatiotemporal data (Pokhrel, 2021), which leads to infor
mation leakage. 

2.5. Multi-step ahead forecast strategy 

The step refers to the forecast range, that is, how many units of data 
are forecasted. To achieve multi-step ahead forecast, two basic strategies 
exist: recursive forecast and direct forecast (Wang et al., 2016). Define 
[y1, y2,…, yN] as the original sequence of inputs, and [yN+1, yN+2,…,

yN+H] as the value of the forecast ahead H steps. Specifically, the essence 
of the recursive strategy is to convert multi-step forecast into one-step 
forecast, usually by training only a one-step ahead model M1. M1 
keeps using the previous forecast results as the input information in the 
next step, and keeps rolling forward the forecast, which will lead to the 
accumulation of forecast errors. In equation (1), d is the embedding 
dimension (lag features length) and f̂ is the functional dependency. 

ŷN+h =

⎧
⎨

⎩

f̂ (yN , yN− 1,…, yN− d+1), if h = 1
f̂ (ŷN+h− 1,…, yN ,…, yN− d+h), if h ∈ {2,…, d}
f̂ (ŷN+h− 1, ŷN+h− 2,…, ŷN+h− d), if h ∈ {d + 1,…,H}

(1) 

The essence of the direct strategy is to build separate models for 
different ahead steps, which will prevent the model from effectively 
capturing the correlation between the upstream and downstream and 
consume large computational resources. The output of the H2O-AutoML 
algorithm only supports one target column with one number. We cannot 
directly output multiple steps results as in the Seq2Seq architecture. 
Seq2Seq is an encoder-decoder architecture that takes one structured 
sequence as input and another structured sequence as output, so it can 
directly output multi-step prediction results (Zhang et al., 2021). In 
consideration, we combine two strategies, i.e., using direct strategies to 
optimize separately on different forecast ahead steps (different 
single-step models for different ahead steps). Recursive strategy is used 
to complete multi-step forecast. 

2.6. Baseline models 

Three deep learning models including recurrent neural network 
(RNN), long short term memory network (LSTM), gated recurrent unit 
(GRU) were done using R packages keras (version 2.7.0.9) and 
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tensorflow (version 2.7.0.9) (Falbel et al., 2022; Kalinowski et al., 
2022). Three machine learning models including K-Nearest neighbor 
(KNN), support vector machine (SVM) and principal component 
regression (PCR) were achieved using the R packages Rminer (version 
1.4.6) (Cortez, 2020). 

2.7. Statistical metrics 

Root mean square error (RMSE), mean absolute error (MAE), mean 
absolute percentage error (MAPE), spearman correlation coefficient 
(SCC) and R-Square were used to evaluate the model performance. 
Related calculations were done by the R packages yardstick (version 
0.0.9) and metrics (version 0.1.4) (Hamner et al., 2018; Kuhn et al., 
2022). MAPE, SCC and R-Square are dimensionless metrics. The units of 
MAE and RMSE are the same as the raw data units. RMSE is more sen
sitive to the size of the error, and the smaller the value, the better the 
fitting effect. MAE is more tolerant of outliers than RMSE. The value 
range of MAPE is [0,+∞), and 0 represents a perfect model. R-Square 
represents the explanatory ability of the regression model, the value 
range is [− 1, 1], the larger the value, the better the model fitting effect. 
The range of SCC is [− 1, 1], and the larger the value, the stronger the 
temporal correlation between the two groups of data. Assuming that yi is 
the true value, ̂y is the forecasted value, and m is the amount of data, the 
mathematical formula is as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1
(yi − ŷ)2

√

(2)  

MAE =
1
m
∑m

i=1
|(yi − ŷ)| (3)  

MAPE =
1
m
∑m

i=1

⃒
⃒
⃒
⃒
yi − ŷ

yi

⃒
⃒
⃒
⃒ (4)  

R2 = 1 −
SSE
SST

= 1 −

∑
(ŷ − yi)

2

∑
(yi − y)2 (5)  

SCC= 1 −
6
∑

d2
i

m3 − m
(6)  

where, SSE (sum of squared residuals error) represents the sum of the 
squares of the difference between the true value and the forecasted 
value. SST (sum of squares total) represents the sum of the squares of the 
difference between the true data and its mean. di is the difference be
tween the ranks of each pair of data in the two sets of data. 

Shannon entropy is used to describe the uncertainty of information 
(Shannon, 1948), the larger the value, the more difficult to forecast the 
data. We use the R package tsfeatures (version 1.0.2) to calculate the 
spectral entropy of the SWH (Hyndman et al., 2020). The formula is as 
follows: 

Hs(xt)= −

∫ π

− π
fx(λ)log fx(λ)dλ (7)  

where, xt is a univariate time series. fx(λ) is an estimate of the spectral 
density of the data. 

2.8. Computational resources 

The hardware environment is a 24-core 2.30 GHz CPU (Intel Xeon 
Platinum 8260L), and the memory is 120 GB. The system environment is 
Ubuntu 18.04, and all experiments are written in R (version 4.1.1) and 
other outstanding R packages. Sapply function is used to implement 
parallel computation for efficiency. 

3. Results and discussion 

3.1. Study area 

As shown in Fig. 1a, in order to evaluate the performance of the 

Fig. 1. (a) Visualization of buoys’ geographic location, ID and water depth using R package ggOceanMaps (version 1.2.6) (Vihtakari, 2022, p. 2). (b) Pearson 
coefficient matrix between buoys. (c) The SWH time series clustering analysis of buoys. 
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forecast framework in waves with different statistical characteristics, 
considering the water depth and data availability of the stations, in the 
spatial dimension, we selected 9 buoy stations as the research objects. In 
the time dimension, we focus on the SWH data in 2021 in order to assess 
and track the latest SWH status. The ID, coordinates, site code (NDBC 
code), depth and statistical characteristic information (minimum, 
maximum, mean, variance, data amount) of the buoys are given in 
Table 1. 

The water depths where the buoys were located ranged from 
approximately 0-50 m to 4000–6000 m. To verify that the buoys possess 
different characteristic patterns, we calculated the Pearson coefficients 
among the buoys using data with common time periods. As shown in 
Fig. 1b, the numbers in the squares represent the Pearson coefficients. 
The more purple the squares are, the larger the coefficients are. Red 
crosses represent P values greater than 0.05 (statistical significance 
level), that is, they did not pass the statistical test and were not signif
icantly different from each other. 

It was able to see that there was a strong correlation between buoys 
ID 3 and ID 5, ID 8 and ID 9, and the correlation between the data from 
the other buoys was not as strong. We then performed a temporal 
clustering analysis using the R package TSclust (version 1.3.1) (Montero 
and Vilar, 2015), with the dissimilarity computation using the 
auto-correlation function (ACF). The clustering function hclust uses the 
complete linkage approach. As shown in Fig. 1c, the buoy ID 4 is 
different from the other 8 buoys, which may have some unique data 
pattern. Fig. 2 visualizes the time series of the SWH for the nine buoys. 
The buoys ID 4 and ID 6 start recording data on July 6, 2021 at 15:00 

and June 8, 2021 at 03:00, respectively. The buoy ID 5 is vacant from 
July 12, 2021 at 15:00 to September 22, 2021 at 13:00. The buoy ID 8 is 
vacant from January 21, 2021 at 07:00 to June 6, 2021 at 01:00. Other 
sites have a small range of vacant data. 

3.2. Forecast framework 

In multi-step ahead forecast, when adding lag features to time series 
data (such as SWH) using the sliding window method (SWH can also be 
understood as spatiotemporal data, but in this paper different buoys are 
considered as independent objects. So, they are only considered as 
temporal data), all must face the problem of how to choose the length of 
lag features (rolling window size). This can usually be determined 
empirically, or through iterative trials, which will inevitably undergo a 
large number of training resources. The key to solving the length of lag 
features is how to find the global optimum with a minimum number of 
attempts. In this paper, we try to consider the length of lag features as a 
black-box function problem, that is, we only focus on the input (length of 
lag features) and the output (multi-step forecast performance), and its 
mathematical form is as follows: 

X∗ = argx∈S max f(x) (8) 

S is the candidate set of X. The whole expression X∗ aims to maximize 
(or minimize) the value of f(x) by selecting a suitable X from S. Where 
f(x) is a function between the length of lag features and the model output 
performance, the expression of which is difficult to know. In order to 
solve for the point closest to the global optimum, we can first model the 

Table 1 
Coordinates, site code (NDBC code), water depth of buoys and the SWH statistical characteristics.  

ID Location Site code Min (m) Max (m) Mean (m) Std (m) Depth (m) Data amount 

1 (27◦20′55′′ N, 84◦16′30′′ W) 42099 0.13 4.13 0.90 0.55 93.9 7922 
2 (24◦24′26′′ N, 81◦58′1′′ W) 42095 0.13 4.42 0.77 0.43 99.1 7784 
3 (28◦30′27′′ N, 80◦11′6′′ W) 41009 0.27 3.91 1.04 0.51 42.0 8552 
4 (32◦48′6′′ N, 79◦37′8′′ W) 41065 0.23 4.07 0.74 0.34 11.0 4121 
5 (28◦52′39′′ N, 78◦29′6′′ W) 41010 0.49 5.31 1.50 0.68 890.0 6586 
6 (31◦45′35′′ N, 74◦56′41′′ W) 41002 0.46 7.01 1.47 0.73 3784.0 4942 
7 (31◦49′53′′ N, 69◦34′23′′ W) 41048 0.50 8.93 1.83 0.91 5394.0 8575 
8 (27◦27′48′′ N, 71◦27′56′′ W) 41047 0.65 4.06 1.47 0.50 5347.0 5491 
9 (23◦49′19′′ N, 68◦23′2′′ W) 41046 0.61 4.95 1.62 0.55 5549.0 8570  

Fig. 2. The SWH time series visualization of buoys, darker color represents the greater water depth of the station. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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distribution of f(x) with a priori assumptions, and then use the subse
quent feedback to continuously train the model that optimizes the 
conjecture to continuously approximate the f(x) function. Such methods 
are widely used in hyperparametric optimization in machine learning, 
usually grid search method, stochastic search method, genetic algo
rithm, particle swarm optimization method and Bayesian optimization 
method. Among them, genetic algorithms and particle swarm optimi
zation belong to population optimization algorithms, which require a 
sufficient number of initial samples and are not efficient for optimiza
tion, and are classical black-box optimization algorithms (Kennedy and 
Eberhart, 1995). Grid search method and random search method are 
methods with general effectiveness and are not ideal in the case of 
limited arithmetic resources (Liashchynskyi and Liashchynskyi, 2019). 
Bayesian optimization constantly uses prior points to forecast posterior 
knowledge, so it is this feature of referring to previous evaluation results 
when trying the next round of hyperparameters. Bayesian optimization 
saves a lot of useless work and performs better (Du et al., 2022; Shields 
et al., 2021; Turner et al., 2021). 

Therefore, we propose a new forecast framework for the SWH by 
solving the optimal length of lag features based on Bayesian optimiza
tion algorithm, using automated machine learning as the back-end 
model supporter. At the same time, the data is decomposed and recon
structed. The data processing flow is shown in Fig. 3a. The raw data are 
decomposed into seasonal, random and trend data. Then the random 
data are discarded and the remaining two data are summed to obtain the 

fitted data. It is worth noting that we only use it to smooth the training 
dataset, not to get multiple components to train/forecast individually 
and separately. Tuning, validation and test dataset are not smoothed and 
the test dataset are completely isolated. The dataset is dynamically 
created by Bayesian optimization algorithm. Specifically, the rolling 
window method is used, as shown in Fig. 4. In a sample of data, the 
length of lag features is the length of the training data set, and the length 
of the prediction data is fixed at one (H2O-AutoML only supports single- 
step output). Then, slide one data (step) forward, and at the new starting 
point, the above operations are repeated to complete the dataset crea
tion. Simply put, the length of lag features determines how much his
torical data is used to predict future data. 

For the Bayesian optimization process, as shown in Fig. 3b, the first 
step is to characterize the distribution of the objective function (green 
objective line) by making a prior assumption (blue proxy model), and a 
common conjecture in general is to assume that the objective function 
satisfies a Gaussian distribution (normal distribution). This is followed 
by an initialization process that generates a random number of initiali
zation points (red round points), which are fed into the objective func
tion. The objective function return value (function score) is input into 
the hypothesis model and utilized by the acquisition function. Then the 
acquisition function selects the next points (black triangle points) to 
evaluate in the revised model, so that the model can approach the 
objective function more efficiently. The acquisition functions all return 
unitless numbers that are used to internally quantify which points are 

Fig. 3. (a) Smoothing process for data decomposition. (b) Visualization of Bayesian optimization process using R package mlrMBO (version 1.1.5) (Bischl 
et al., 2018). 

Fig. 4. Direct-Recursive forecast framework consisting of automated machine learning and Bayesian optimization of lag features length.  
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most exploratory. Finally, it is judged whether the new sample points 
satisfy the preset target, and if not, it is returned to the model as input 
data (blue square point) and corrected again until the target is satisfied, 
and then the best combination of parameters currently selected is 
output. In the framework, the prior function is set to Gaussian process, 
the acquisition function is set to expected improvement. Different 
forecast ahead steps are set to different boundary ranges to search in 
integer form. The summation values of R2,CCC and MAPE (taking 
opposite numbers) on the validation set are calculated as return values. 
For the algorithm initialization, we utilize Latin hypercube sampling, 
which is randomly selected within the bounded range. The metric for 
terminating the search is Utility, which stops optimization when the 
value converges to 0. 

As shown in Fig. 4, in the framework, we combine two forecast 
strategies and optimize them separately for different ahead steps using 
direct strategies. Within specified ahead steps, multi-step forecast is 
achieved using a recursive strategy, which means that the forecast is 
iterated forward continuously using a single-step model. The number of 
forecast steps is also the number of iterations. Specifically, the fore
casted values in the previous step are used as input and are sent to the 
next forecast step, i.e., forecasting with updates is not used because in 
practical applications it is impossible to know the future information in 
the present. 60% of the raw data is used for training, tuning data is used 
as validation data inside H2O-AutoML to optimize the stand-by models. 

All candidate models optimized by automated machine learning are 
applied on the external validation dataset and the best model is selected 
based on MAE metrics. Finally, the performance is checked on the fully 
isolated test dataset. 

3.3. Automated machine learning training stability 

Rational setting of the maximum search time for automated machine 
learning can reduce unnecessary computational resources. We randomly 
choose 3 different lag features lengths (30 steps, 45 steps, 60 steps) and 
set 4 different search time (10 min, 20 min, 30 min, 40 min). Search time 
refers to the training time of automated machine learning. The MAPE of 
24h ahead forecast is used as an evaluation metric, this is because to 
accumulate the most errors to check a large performance float. And the 
dimensionless metric is used to compare the performance between 
different floats. As shown in Fig. 5a, we found that the longer the search 
time is not better, the longer the search time may not bring much 
improvement. For example, buoys ID 3, 5, 6, 7 in the long search time, 
the performance does not get significant improvement. The rest of the 
sites in 10 min search time, also reached or close to the best MAPE value. 
So, we choose 10 min as the maximum search time for automated ma
chine learning. 

To determine whether it is necessary to try multiple training, trials 
were subsequently performed at the same 3 lag features lengths, with the 
24h ahead steps MAPE as the evaluation metric. The automated machine 
learning maximum search time is set to 10 min. The results are shown in 

Fig. 5b. Within 5 training times, the best performance is usually ach
ieved the first time, and even if not, the best performance is achieved 
within a maximum of 3 attempts. Therefore, for the subsequent formal 
training, we first train 2 times, check whether the performance of the 
two times has fluctuations, and stop trying if there are no fluctuations. 
Otherwise, go ahead and try a third time, and take the model with the 
best performance among the three repetitions as a representative. In the 
formal training, we choose the extreme multi-step forecast result as the 
floating metric on the validation dataset, and do not use any information 
from the test dataset. 

3.4. Best model results and optimization process 

Long-term forecast of the SWH (belonging to chaotic signals) is 
impossible (Huang and Dong, 2021). Therefore, for multi-step ahead 
forecast, we choose lead times of 1h, 3h, 6h, 9h. The lag features search 
intervals in different forecast ranges are shown in Table 2. The search 
boundary is the range of lag features length, and the search length is the 
number of different values contained in the search boundary. For 
different forecast horizons, we keep the search length consistent. 

Since we use a hybrid direct-recursive forecast strategy, the best 
models differ on different forecast lead times at the same buoy site. As 
shown in Fig. 6a, the best models for buoys ID 2, 5, 6, and 9 remain 
consistent at all four ahead steps, which are SE, GLM, GLM, and GLM, 
respectively. The best models on buoy ID 4 vary the most, and the best 
models at 1h, 3h, 6h, and 9h are XGBoost, GBM, DRF, and GBM, 
respectively. Buoys ID 1, ID 7 have their best models change between 3h 
and 6h, and the best models on buoy ID 3, ID 8 only change on 6h. For 
the best lag features length, the buoys ID 1, 2, 4, and 9 increase the 
length of the lag features as the forecast ahead steps increase. 

The rest of the sites are kept in a consistent or random state. Mean
while, no one algorithm consistently performs the best. But in general, 
ensemble learning models and GLMs beat most algorithms. It is worth 
noting that machine learning models can only capture the relationship 
between data inputs and outputs. If there are dissimilar climate (data 
patterns) between the validation dataset, test dataset, and training 
dataset, this may yield poor decisions on the best model selection, i.e., 
the best model on the validation dataset may not be optimal on the test 
dataset. However, in any case, we cannot use the test dataset directly or 
indirectly to train, optimization, or even select the best model, although 
the results would be better. 

Fig. 5. Automated machine learning longest training time test (a) and training number test (b), visualized using the R package grafify (version 2.2.0) (Shenoy, 2021).  

Table 2 
The boundary and length of the search lag features.  

Forecast horizon Search boundary Search length 

1h [6,72] 67 
3h [6,72] 67 
6h [18,84] 67 
9h [18,84] 67  
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Subsequently, we visualized the Bayesian optimization process on 
buoy ID 1. As shown in Fig. 6b, the blue points represent the initiali
zation points that start the optimization process. The red points repre
sent the points that the algorithm explores outward based on the 
previous information. The utilities represent the uncertainty of the 
exploration interval, when convergence to 0 means that a better point 
than the current parameter set has been found, i.e., the global optimum 
has been found. Similarly, we visualized the process of decomposing and 
reconstructing the training data on buoy ID 1, as shown in Fig. 6c. The 

black line is the original observation, the yellow line is the trend 
component, the green line is the seasonal component, and the purple 
line is the random component. The trend component and seasonal 
component are reconstructed into smoothed data after random variables 
are excluded. 

3.5. Forecast performance 

Fig. 7a–d show the SCC, RMSE, MAPE, and MAE of four forecast lead 

Fig. 6. (a) Results of the forecast framework on 9 buoys, visualized using the R package ggplot2 (version 3.3.5) (Gómez-Rubio, 2017). Visualization of the Bayesian 
optimization process (b) and decomposition-reconstruction smoothed data (c) on buoy ID 1. 

Fig. 7. Visualization of the four metrics SCC (a), RMSE (b), MAPE (c), MAE (d) on 9 buoys and different ahead steps, using the R package pheatmap (version 1.0.12) 
(Kolde, 2019). Scatter density maps of forecasted and true values on buoys ID 2 (e) and ID 4 (f), using the R package ggpointdensity (version 0.1.0) (Kremer and 
Anders, 2019). 
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times. The model performs best at 1h ahead step with maximum SCC of 
0.99, minimum RMSE of 0.06m, minimum MAPE of 0.05, and minimum 
MAE of 0.04m. In the longest 9h ahead steps, the SCC is maximum 0.92, 
RMSE is minimum 0.14 m, MAPE is minimum 0.08, and MAE is mini
mum 0.10 m. Combining the results, the buoy ID 2 performed the best 
compared to other buoys. At the same time, we can clearly see that with 
the increase of the forecast ahead step, the model performance decreases 
to varying degrees, which is due to the accumulation of errors caused by 
the limitations of machine learning single-step forecast. The text color of 
the buoy ID represents the clustering result (the number of Clades is 3). 
The same color represents the same class. The clustering results for the 
four metrics show that the buoys clustered between ID 1 and 2, between 
ID 3, 5, 6 and 7, and between ID 8 and 9. This may be somehow related 
to the water depth where the stations are located (as in Fig. 1a). 
Dimensionless metrics is suitable for comparing performance between 
buoys. In particular, we were able to clearly observe that buoy ID 4 
exhibits a MAPE and SCC performance that is clearly "unusually" poor 
compared to the other buoys. We speculate that this may be related to its 
pattern of temporal variation. As we found significant heterogeneity 
between ID 4 and the rest of the buoys in the buoy temporal clustering 
analysis (Fig. 1c). Overall, the framework forecasts are feasible in the 
short-term forecast range, with buoys ID 2 and 4 representing the best 
and worst forecast performance, respectively. 

Subsequently, we looked at the situation between the forecasted and 
true values on these two representative buoys, as shown in Fig. 7e–f. The 
red dashed line is the baseline with a slope of one. The black line is the 
fitted straight line, k represents the slope, and b represents the intercept. 
In buoy ID 2, it can be seen that on the four forecasted ahead steps, a 
slender concentration trend is maintained between the forecasted and 
true values, and the slopes are all above 0.90. In contrast, in buoy ID 4, 
the forecasted and true values are more scattered between each other, 
and the fitted straight line deviates greatly from the baseline. 

We then proceeded to understand the machine learning model 
interpretability on the test dataset of two buoys. Partial dependance 
describes the marginal effect of the feature variables on the model 
response. That is, keep other features unchanged, and then change the 
value of the target feature to observe the fitting of the model. As shown 
in Fig. 8a, among the four ahead steps on buoy ID 2, the last feature in 

the best lag length (referred to as the best feature) shows a high linear 
positive correlation with the average output of the model. The green 
shading represents the confidence interval. As shown in Fig. 8b, among 
the four forecast ahead steps on buoy ID4, the best feature does not show 
a simple linear relationship with the average output of the model. As the 
best feature increases, the average output of the model get less 
improvement. This may also explain why the forecast framework works 
better on buoy ID 2 than on ID 4. Shapley additive explanations (SHAP) 
summary plots combine the influence of feature importance and fea
tures. The vertical coordinates indicate the feature names, in decreasing 
order of importance to the model from top to bottom. Each point rep
resents the SHAP value for each sample. The closer the color is to red, the 
larger its value, and the closer it is to blue the smaller its value. The more 
dispersed the dots in the graph, the greater the influence of the variable 
on the model. The best model for buoy ID 2 on all four ahead steps is the 
ensemble learning model, so there is no SHAP plot. As shown in Fig. 8c, 
the results on buoy ID 4 show that the best feature always has the 
greatest impact on the model. The larger the value of the best feature, 
the greater the output of the model, which is consistent with the results 
of partial dependance. 

Subsequently, we visualized all the training results on the buoys ID 2 
(Fig. 9a) and ID 4 (Fig. 9b). Buoy ID 4 is more sensitive than ID 2. For the 
effect of hysteresis feature length optimization, as shown in Fig. 9c, the 
overall improvement of the buoy ID 4 is higher than that of ID 2. At the 
same time, the larger the forecast ahead steps, the greater the 
improvement in performance. May because the more future information 
to be forecasted requires more complex historical information. 

In the above results, we can see that the buoy ID 2 and 4 show a very 
large difference, both in performance and other connections. We 
guessed that this might be related to the pattern of data present on the 
buoy ID 4 itself, so we calculated Shannon entropy for the time series 
data. As shown in Fig. 9d, the results showed that the entropy of buoy ID 
4 is as high as 0.80. A larger entropy means that the data are more 
difficult to forecast, i.e., the degree of uncertainty is higher. It qualita
tively explains why the poor forecast results appear on buoy ID 4. For 
any forecast algorithm, the upper limit effect is dependent on the data 
itself or the extrinsic feature engineering (Harrington, 2012; Kläs and 
Vollmer, 2018). On the one hand, not all data can be forecasted (such as 

Fig. 8. Partial dependency plots of four forecast lead steps on buoys ID 2 (a) and ID 4 (b), and summary results of Shapley additive explanations on buoy ID 4 (c).  
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white noise or random walk data). On the other hand, time series can be 
post-processed (such as removing outliers). This additional data pro
cessing is not available in the proposed framework. Here, to verify our 
conjecture and reveal the limitations of the framework, we post-process 
the data of buoy ID 4. Statistically so-called outliers (extreme values) are 
removed. Data processing utilizes the tsclean function of the R package 
forecast (Hyndman et al., 2022). It is based on STL (seasonal and trend 
decomposition using loess) and super smoother. And uses 
student-distribution based quantiles to detect outlier points. Replace 
outliers using linear interpolation of adjacent values. The visualization 
of the processed and raw data is shown in Fig. 10. 

It can be seen that more statistical outliers are removed in the second 
half (after the middle-dotted line). The data after removing outliers is re- 
entered into the framework for testing, and the results are shown in 
Table 3: 

It can be seen that after removing outliers, both R-Square (assessing 
the model fitting) and SCC (assessing the linear correlation of two var
iables) yield different degrees of improvement. As can be seen from 
Fig. 10, the outliers increase significantly in the second half. The 
framework may be overfitting on the raw buoy ID 4 data. Due to the 
appearance of outliers, the test and the training set have significantly 
different data patterns. This phenomenon is called data shift, which 
leads to poor generalization ability of the model. It is worth noting that 
the datasets size we used ranged from six months to less than one year. 
This is a relatively small training data and the model may not be able to 
capture more features. Whereas in machine learning, usually increasing 

the training data improves the training process of the model (Gautam 
and Yadav, 2014), this also needs further research. However, it is very 
dangerous to directly remove outliers without the user’s permission. 
Assuming focus on the extreme physics behind outliers, users should 
first clarify the purpose of using the model, and then decide how to deal 
with outliers. Behind every outlier point is a noteworthy physical phe
nomenon. When regression problems (forecasting future values, 
continuous) do not work, we should consider converting them to clas
sification problems (forecasting future probabilities, categorical). This 
paper only discusses the situation of the data itself, and the externally 
complex feature engineering still deserves additional discussions. 

Finally, we conducted ablation experiments on the AutoML module 
in the forecast framework. We used six other models, three deep learning 
(SRN, LSTM, GRU), and three machine learning (KNN,SVM,PCR), to 

Fig. 9. All training results on buoys ID 2 (a) and ID 4 (b) and optimization boosting degree (c). (d) Shannon entropy of the SWH time series on 9 buoys.  

Fig. 10. Comparison of buoy ID 4 raw data (Original) and after removing outliers (Clean).  

Table 3 
Percentage change in R-square on buoy ID 4 after removing outliers.  

Metric Data 
processing 

ID4 - 1 h ID4 - 3 h ID4 - 6 h ID4 - 9 h 

R2 No 0.429 0.409 0.505 0.46 
Yes 0.796 

(+85.55%) 
0.718 

(+75.55%) 
0.706 

(+39.80%) 
0.666 

(+44.78%) 
SCC No 0.887 0.853 0.856 0.81 

Yes 0.924 
(+4.17%) 

0.877 
(+2.81%) 

0.856 0.851 
(+5.06%)  
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replace AutoML in the framework in buoy ID 2 (as in Table 4) and ID 4 
(as in Table 5). 

It is worth noting that the optimal lag features length is data and 
model type dependent and is not fixed. That is, for the same data, 
different mapping relationships between lag feature length and perfor
mance may also arise among different models. So, we form a separate 
forecast framework for the six models and re-explore the optimal lag 
features lengths, keeping the other parameters constant. The results 
showed that in both two buoys, the other five models have different 
degrees of performance degradation compared to AutoML, and magni
tudes increase to different degrees as the forecast lead steps increases. 
The PCR in the baseline models completely failed on buoy ID 4, which 
may be related to model capability and data quality. 

4. Conclusions 

In this paper, we propose, for the first time, a SWH forecast frame
work using automated machine learning. The proposed framework fo
cuses on a unique model training paradigm, a strategy that discards the 
previous idea of utilizing only the single algorithm and applies a pool of 
candidate models to adaptively select the most appropriate model with 
hyperparameters optimizing. The framework decomposes and re
constructs the data to reduce the influence of raw noise. Bayesian 
optimization algorithm is also used to select the appropriate lag features 
length to avoid the negative effects from using empirical data or fixed 
scale input data. Nine buoys with different data characteristics are used 
to validate the proposed framework. Compared with the case of using a 
single algorithm, automated machine learning can better adapt to the 
spatial heterogeneity of the data. Among the various buoys, automated 
machine learning is able to select the best model with different algo
rithm types. Bayesian optimization effectively improve the forecast 
performance of the model by optimize the lag features length. For 
Bayesian optimization, its own hyperparameters can also affect the 
optimization process, which is also worthy of further research and dis
cussion. It is worth noting that the data structure of time series like the 
SWH is dynamically changing. Even if the automated machine learning 
outputs the best model, it may only perform well in a certain 
geographical location or a certain time period. We should re-evaluate 
the best model in the past reasonably. The poor performance of the 
framework on buoy ID 4 also reveals its limitations in dealing with data 
outliers. For the outliers, users should try to either eliminate them after 
clarifying their business goals or convert the problem type (from 
regression to classification). In future work, the SWH variables can be 
forecasted using a feature matrix composed of other physical quantity 

data. Also, the effects of spatial location should be considered and utilize 
adjacent buoy sites to provide additional data. The focus of future work 
is biased toward feature engineering of the SWH data. 

Overall, this paper presents a new paradigm for the SWH forecast. It 
introduces the Bayesian optimization algorithm and automated machine 
learning, which can be considered for more applications in coastal/ 
ocean engineering. It is also applicable for forecasting other ocean pa
rameters in an integrated analysis. 
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Table 4 
R-Square percentage change for 6 compared models in buoy ID 2.  

Frame ID2 - 1h ID2 - 3h ID2 - 6h ID2 - 9h 

BO-stR-SRN 0.904 (− 6.61%) 0.83 (− 9.09%) 0.772 (− 6.76%) 0.663 (− 18.75%) 
BO-stR-LSTM 0.894 (− 0.72%) 0.866 (− 1.42%) 0.787 (− 9.06%) 0.702 (− 16.54%) 
BO-stR-GRU 0.921 (− 4.86%) 0.867 (− 5.04%) 0.772 (− 6.76%) 0.709 (− 13.11%) 
BO-stR-PCR 0.942 (− 2.69%) 0.804 (− 11.94%) 0.568 (− 31.40%) 0.527 (− 35.42%) 
BO-stR-SVM 0.965 (− 0.31%) 0.9 (− 1.42%) 0.778 (− 6.04%) 0.672 (− 17.65%) 
BO-stR-KNN 0.961 (− 0.72%) 0.9 (− 1.42%) 0.753 (− 9.06%) 0.681 (− 16.54%) 

BO-stR-AutoML 0.968 0.913 0.828 0.816  

Table 5 
R-Square percentage change for 6 compared models in buoy ID 4.  

Frame ID4 - 1h ID4 - 3h ID4 - 6h ID4 - 9h 

BO-stR-SRN 0.364 (− 15.15%) 0.379 (− 7.33%) 0.438 (− 13.27%) 0.388 (− 15.65%) 
BO-stR-LSTM 0.399 (− 6.99%) 0.375 (− 8.31%) 0.396 (− 21.58%) 0.447 (− 2.83%) 
BO-stR-GRU 0.415 (− 3.26%) 0.369 (− 9.78%) 0.375 (− 25.74%) 0.355 (− 22.83%) 
BO-stR-PCR 0.063 (− 85.31%) 0.05 (− 87.78%) 0.001 (− 99.80%) 0.014 (− 96.96%) 
BO-stR-SVM 0.323 (− 24.71%) 0.265 (− 35.21%) 0.243 (− 51.88%) 0.17 (− 63.04%) 
BO-stR-KNN 0.348 (− 18.88%) 0.294 (− 28.12%) 0.393 (− 22.18%) 0.346 (− 24.78%) 

BO-stR-AutoML 0.429 0.409 0.505 0.46  
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