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The present paper examines the effect of Reynolds number on turbulence properties
in the transition region of a circular jet issuing from a smoothly contracting nozzle.
Hot-wire measurements were performed for this investigation through varying the
jet-exit Reynolds number Red (≡ Ujd/ν, where Uj, d, and ν are the jet-exit mean ve-
locity, nozzle diameter, and kinematic viscosity) approximately from Red ≈ 4 × 103

to Red ≈ 2 × 104. Results reveal that the rates of the mean flow decay and spread
vary with Reynolds number for Red < 104 and tend to become Reynolds-number
independent at Red ≥ 104. Even more importantly, the small-scale turbulence prop-
erties, e.g., the mean rate of dissipation of kinetic energy (ε), the Kolmogorov and
Taylor microscales, are found to vary in different forms over the Red ranges of Red >

104 and Red < 104. Namely, the critical Reynolds number appears to occur at Red,cr

≈ 104 across which the jet turbulence behaves distinctly. Two turbulence regimes
are therefore identified: (i) developing or partially developed turbulence at Red <

Red,cr and (ii) fully developed turbulence at Red ≥ Red,cr. It is suggested that the
energy dissipation rate (DR) can be expressed as ε ∼ νU 2

c /R2 in regime (i) and
ε ∼ U 3

c /R in regime (ii), where Uc and R are the centerline (or maximum) mean
velocity and half-radius at which the mean velocity is 0.5Uc. In addition, the critical
Reynolds number appears to vary from flow to flow. C© 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4811403]

I. INTRODUCTION

Turbulent jets are widely used in various mixing processes of industry such as combustion
and pollution dispersal. In these flows, large-scale motions contain most of the energy and play a
dominant role in transfers of momentum, heat, and mass, while the small-scale turbulence brings
different species together at the molecular level, see, e.g., Refs. 1–3. Note that the small-scale
turbulence spans the dissipative and inertial ranges, which refers to the case for fully turbulent flows
corresponding to sufficiently high Reynolds numbers; inertial-range scales are large compared to
dissipative scales but small compared to the global flow scales. There is no difficulty in defining these
scale-ranges formally at high Reynolds numbers (e.g., Refs. 4 and 5), but their precise definitions
are always difficult at small to moderate Reynolds numbers.1

It has become well known that statistical behaviors of both large-scale and small-scale turbulent
motions in jets depend upon the initial inflow conditions (e.g., Refs. 6–23). Among them, the
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Reynolds number defined by Red ≡ Ujd/ν (where Uj, d, and ν are the jet-exit mean velocity, circular
nozzle diameter or non-circular nozzle equivalent diameter, and kinematic viscosity) is perhaps the
most important quantified condition. Although the influence of Red on the downstream development
of a turbulent jet has been investigated extensively, in terms of large-scale global properties (e.g.,
Refs. 10–23), this topic remains as an interesting challenge, particularly, with respect to those issues
related to the small-scale turbulence.

There have been quite a number of previous studies investigating the Red effect on a circular
turbulent jet issuing from a smooth contraction (SC) nozzle with a top-hat or nearly uniform mean
velocity at exit. Ricou and Spalding10 investigated the Red effect on the entrainment ratio (≡ entrained
mass flow rate/jet exit mass flow rate) over the Reynolds number range 500 ≤ Red ≤ 8 × 104 in
their preliminary experiments. These authors found that the ratio was approximately constant for
Red > 2 × 104–2.5 × 104. They then chose to carry out the remainder of their experiments for Red

≥ 2.5 × 104. Dimotakis et al.11 assessed the scalar-mixing fields of the circular SC jets at Red =
2.5 × 103–104 and found a particular transition in turbulent mixing behavior for Red on the order
of 104. Miller and Dimotakis12 confirmed that the root-mean-squared (RMS) scalar fluctuations in
a water-to-water SC jet decrease with increasing Red and converge to an asymptotic state at Red ≈
2.0 × 104, which is a homogeneous, chaotic, and well-mixed state. Likewise, Gilbrech13 found that
the asymptotic state of the mixing field occurs at Red ≈ 2.0 × 104. Koochesfahani and Dimotakis14

used scalar images of laser-induced fluorescence (LIF) at Red = 1.75 × 103 and 2.30 × 104 and
showed qualitatively a better-mixed state at the larger Red. Similarly, Michalke15 found that the
growth of instability waves in jet shear layers can be reduced dramatically when Reynolds number
is increased. Oosthuizen16 measured a circular SC jet at low Reynolds numbers and found that both
the mean and fluctuating fields depend strongly on Red for Red < 104. Using large eddy simulation
(LES), Bogey and Bailly17 modeled a circular jet at Red = 1.70 × 103–4.0 × 105 and showed that,
as Red is decreased, the jet develops more slowly within the potential core, but more rapidly farther
downstream. Their circular jets achieve self-preservation at a location closer to the exit plane at
low values of Red, a finding which agrees well with that of Pitts18 for turbulent circular SC jets
measured for Red = 3950–11 880. Moreover, Panchapakesan and Lumley19 and Hussein et al.20

indicated that at sufficiently high Reynolds numbers, the decay and spread rates of the SC jet should
be approximately independent of Red, but they did not measure the flow at different values of Red

and so did not indicate a critical Reynolds number, Recr, above which this independence occurs.
Pope21 has nevertheless made it clear in his text that the mean velocity profile and the spreading rate
are independent of Red in the self-similar region (x/d > 30, where x is the downstream distance from
the nozzle exit) of a high-Reynolds number turbulent jet (Red > 104). This value of Red (=104) is
more or less identical to that suggested by Dimotakis4, 24 for the critical Reynolds number at which
turbulent “mixing transition” starts. He claimed that the fully developed turbulent flow requires an
outer-scale Reynolds number of 1.0 × 104–2.0 × 104 or a Taylor Reynolds number of 100–140 to be
sustained and thus suggested that “turbulent flow below this Reynolds number cannot be regarded
as fully developed and can be expected to be qualitatively different.” Dimotakis24 also explained
the turbulent mixing transition based on the relative magnitudes of dimensional spatial scales
of flow.

However, to our best knowledge, apart from some experimental investigations of Antonia
et al.25, 26 and Fellouah and Pollard,27 there have been no other studies, especially systematic detailed
ones, available on the Red dependences of the small-scale turbulence properties of a circular jet and
other shear flows. Despite this, some experimental studies into grid turbulences, e.g., Batchelor4

and Sreenivasan,28 were carried out to test the long-held belief that the time scale of the dissipation
rate in fully turbulent flows is of the same order of magnitude as the characteristic time scale of
the energy containing eddies. Also, the Reynolds-number effect was extensively investigated on the
skewness and flatness factors of the velocity streamwise derivatives transformed from the temporal
derivatives in 1960-1980s, as detailed in Sreenivasan and Antonia1 and Van Atta and Antonia.29

Antonia et al.25 reported the centerline variations of several characteristic quantities of small-
scale turbulence, i.e., the mean dissipation rate ε, the Kolmogorov length scale η ≡ (ν3/ε)1/4, the
Taylor micro-scale λ ≡ 〈u2〉1/2〈(∂u/∂x)2〉−1/2, and the turbulence Reynolds number Reλ = 〈u2〉1/2λ/ν;
here u represents the longitudinal component of the fluctuating velocity. Their measurements were
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made in both circular and plane jets. These authors also obtained the relationship between Reλ

and Red, which is Reλ ≈ 1.74Red
1/2. However, they used only three relatively high values of Red

(=5.56 × 104, 1.09 × 105, and 4.71 × 105) for the circular jet and two (2.04 × 104, 4.28 × 104)
for the plane jet and did not consider low Reynolds number effect. Very recently, Fellouah and
Pollard27 measured η, λ, and also the outer laminar thickness and inner viscous scale24 at different
positions in near to intermediate regions of a circular free jet for the purpose to investigate the
concept of a mixing transition proposed by Dimotakis.24 They found that all these scales decrease
in magnitude with the local Reynolds number based on the local centerline mean velocity and
the local time-averaged diameter of the jet but appear to be nearly constant across the jet, which
is unexpected. Note that five different values of their Reynolds number Red were taken between
6 × 103 and 1.0 × 105; unfortunately, however, only one value of Red was below 104. In this context,
there have been insufficient data for low Reynolds numbers available to determine reliably either
the scale factors of ε, η, λ, and Reλ or the critical value of Red which draws up a distinct boundary
between low and high Reynolds number regimes or around which a turbulent mixing transition just
occurs.

To address the above lack, the present study is aimed at investigating the Red dependences of
both the global properties (e.g., the mean velocity decay and spread rates: KU and KR) and small-
scale turbulence properties (e.g., ε, η, λ, and Reλ) in the transition and early far-field regions of
a circular jet at eight different Reynolds numbers between Red ≈ 0.4 × 104 and Red ≈ 2.0 × 104.
More specifically, the investigation is aimed at

(1) quantifying the Red dependences of the global properties KU, KR, and the small-scale properties
ε, η, λ, and Reλ;

(2) identifying the critical Reynolds number based on both large and small-scale flow properties;
and

(3) clarifying the way in which ε scales, particularly for low Red, with relatively easily measureable
characteristic velocity and length scales.

To the above end, detailed measurements of the fluctuating velocity over a downstream distance
of about 30 nozzle exit diameters, crossing the near-field, transition, and far-field regions, were
performed by varying Red systematically between 4 × 103 and 2 × 104, a range of Red which is
believed to span the mixing transition across the critical Reynolds number.2, 24 The digital filter
scheme proposed by Mi et al.30 and recently validated further by Mi et al.31 was employed to obtain
likely good-quality data of small-scale turbulence.

The rest of the paper is arranged as below. In Sec. II, the self-preserving relations are analytically
derived for ε, η, λ, and Reλ which are dependent on Red. Details of experiments and data processing
are then provided in Sec. III that includes the measurement procedure, hotwire resolution and
correction, post-filtering scheme, and initial mean and RMS velocity profiles. Basic large-scale
properties (e.g., mean and RMS velocities) are presented in Sec. IV whereas small-scale properties
of turbulence for the circular jet are analyzed in Sec. V. In Sec. VI, further discussion about turbulence
mixing transition is given. Concluding remarks are finally provided in Sec. VII.

II. SELF-PRESERVING RELATIONS OF THE Red-DEPENDENT ε, η, λ, AND Reλ

In the far field of a circular jet, the mean velocity field is expected to approach self-preservation
which requires the centerline mean velocity Uc as the characteristic velocity scale and the half-radius
R as the characteristic length scale to obey the following equations (e.g., Ref. 21):

Uc/U j = KU [(x − xU )/d]−1, (1)

R/d = K R[(x − xR)/d]. (2)

Here, KU and KR are the jet velocity decay constant and spread rate, respectively, while x is the
streamwise coordinate or downstream distance measured from the nozzle exit; xU and xR are the x-
locations of the virtual origin of (1) and (2). Further, if the fluctuating velocity field also asymptotes to

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.63.180.147 On: Wed, 13 Aug 2014 16:50:17



075101-4 Mi, Xu, and Zhou Phys. Fluids 25, 075101 (2013)

self-preservation, each component of the centerline RMS velocity divided by Uc, i.e., the turbulence
intensity, should be constant in the far field; e.g., the streamwise component〈

u2
〉1/2

Uc = K I (3)

should not vary with x.
For turbulent jets of low Reynolds numbers, both the mean and fluctuating fields are expected

to depend strongly on Red, and the energy-containing range and that of the dissipation overlap (e.g.,
Tennekes and Lumley32). So there must be viscous effects in the process of energy transferring from
large eddies to small eddies and thus dimensional analysis leads to the energy dissipation rate being
expressed by the characteristic scales (Uc, R) as

ε = KεlνU 2
c /R2, (4)

where Kεl is an experimental constant, independent of Reynolds number. On the other hand, when
Red is sufficiently high, KU, KR, and KI are nearly independent of Red (e.g., Ref. 21). It is considered
that ε should be equal to the supply rate of the turbulence kinetic energy from the large-scale
structures (e.g., Ref. 32), which is of order U 3

c /R, i.e.,

ε = KεhU 3
c /R (5)

and Kεh is a Red-independent constant. It is worth noting that Eq. (5) actually can be derived from
three apparently independent arguments generally for any turbulent flows, where Uc and R are
treated as characteristic scales in general. These arguments follow. In Kolmogorov’s equilibrium
hypothesis,33 it is assumed that the turbulence dynamics in the non-dissipative scales depend only
upon the energy flux and the length scale. Following this, Laudau and Lifshitz34 demonstrated
that Eq. (5) is a simple consequence of dimensional analysis. According to Townsend,35 Eq. (5) is
obtained because it is a necessary condition for free turbulent flows to achieve the self-preserving
state. Moreover, assuming the rate of energy supply by large eddies to small eddies to be inversely
proportional to the time scale of the large eddies, i.e., 〈u2〉−1d〈u2〉/dt ∼ Uc/R, we can easily obtain
that ε ∼ d〈u2〉/dt ∼ U 3

c /R, which is Eq. (5). Note that Eq. (5) has been well validated by a number
of previous investigations in several turbulent flows, e.g., Refs. 25 and 26; however, to our best
knowledge, perhaps Eq. (4) has yet to be checked in detail in any turbulent flows.

Substituting (1) and (2) either into (4) or (5) can enable the normalized dissipation rate, assuming
that xU = xR, to be expressed as

ε∗ = ε(d/U 3
j ) = Cε[(x − xε)/d]−4 (6)

in the self-preserving circular jet. That is, Eq. (6) works for a round turbulent jet at any relevant Red.
The first derivation of Eq. (6) was perhaps made by Friehe et al.36 for high Reynolds numbers. In (6),
Cε and xε denote the prefactor and the virtual origin location, respectively, perhaps both depending
on Red. The value of Cε can be determined by substituting measured data into (6) or by the following
equations over two regimes of turbulence, i.e.,

Regime (i) : Cεl = Kεl K
2
U K −2

R Re−1
d at Red < Recr , (7a)

Regime (ii) : Cεh = Kεh K 3
U K −1

R at Red ≥ Recr . (7b)

Both Kεl and Kεh are independent of Red. Similarly, several characteristic turbulence scales, such
as the Kolmogorov length scale η ≡ (ν3/ε)1/4, the Taylor micro-scale λ ≡ 〈u2〉1/2〈(∂u/∂x)2〉−1/2 and
the turbulence Reynolds number Reλ = 〈u2〉1/2λ/ν can be analytically expressed as (assuming the
isotropic turbulence, i.e., ε = 15ν〈(∂u/∂x)2〉)

η/d = Cη[(x − xη)/d] with Cη = C−1/4
ε Re−3/4

d , (8)

λ/d = Cλ[(x − xλ)/d] with Cλ =
√

15K I KU C−1/2
ε Re−1/2

d , (9)

Reλ = CReRe1/2
d with CRe =

√
15K 2

I K 2
U C−1/2

ε . (10)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.63.180.147 On: Wed, 13 Aug 2014 16:50:17



075101-5 Mi, Xu, and Zhou Phys. Fluids 25, 075101 (2013)

In Eqs. (8)–(10), Cε represents both Cεl and Cεh for convenience; this implies that the Red depen-
dences of Cη and Cλ occur over both regimes whereas that of CRe takes place only in regime (i) at
Red < Recr. They may be determined by the measured data of η and λ through Eqs. (8)–(10) or
by constants KU, KR, KI, Kεh, and Kεl obtained from measurements of the mean velocity and the
centerline fluctuating velocity. In addition, the virtual origin locations xη and xλ are expected to be
different from their counterparts for Eqs. (1), (2), and (6) as will be indicated late in Sec. V D.

III. EXPERIMENTAL DETAILS AND DATA PROCESSING METHODS

A. Experimental setup and procedure

The present circular jets were generated from a nozzle system whose schematic diagram is
shown in Fig. 1. The facility consists of a cylindrical plenum chamber with an internal diameter
of 95 mm and a length of 600 mm. Filtered and compressed air is supplied through the plenum to
a smooth contraction nozzle. The nozzle outlet profile is third-order polynomial, contracting from
a diameter of 95 mm to the exit diameter of d = 20 mm, flush with a flat surface of 200 mm in
diameter. This enables the exit profile of the mean velocity to be “top-hat”-shaped, i.e., uniform
except for the shear layer region near the edge of the nozzle. The exit velocity Uj was varied over
the range 3 ≤ Uj ≤ 15 m/s, corresponding to the Reynolds number Red ≈ 4050–20 100. In addition,
the jet facility was horizontally placed in a room of dimensions 9600 mm × 6000 mm × 3500 mm,
with the nozzle locating at a height of 1500 mm (75d) above the floor and the nozzle exit being
more than 300d away from the wall. It is thus assumed that, according to Hussein et al.,20 the
present measurements conducted in such a confined laboratory would suffer from negligible loss of
momentum with increasing downstream distance.

Present velocity measurements were performed using hot-wire anemometer mainly along the
centerline at x/d ≤ 30, where x is the downstream distance measured from the nozzle exit. Only
the streamwise component of the instantaneous velocity was taken by a single hot-wire (tungsten)
probe, operated by an in-house constant temperature circuit with overheat ratio of 1.5. The hot-wire
sensor, aligned perpendicular to the x-axis, is 5 μm in diameter (dw) and approximately 1.0 mm
in length (lw) so that lw/dw ≈ 200. It was normally suggested that lw/dw ≥ 200 so as to enable
the central portion of the wire to have a uniform temperature distribution (e.g., Hinze37). For the
present experimental conditions, the frequency response of the hot wire and anemometer, determined
by the square-wave technique, was about 100 kHz, so that the temporal response of the wire was
approximately 10−5 s. To avoid the aerodynamic interference of prongs on the hot-wire sensor, the
present probe was carefully mounted, with prongs parallel to the circular jet exit.

It is worth noting that Mi and Antonia38 performed measurements of the mean and RMS
velocities, as well as those of their lateral gradients, using single-wire and one or four X-wire

FIG. 1. A schematic diagram of the experimental arrangement.
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probes, in the turbulent wake of a circular cylinder. These authors demonstrated that the single-wire
probe measured the streamwise velocity appropriately in the wake flow at x/d = 20 (here d is
the cylinder diameter), obtaining nearly the same results as from X-wire probes (see their Figs. 2
and 5). The flow under the present consideration was not more highly three-dimensional than the
wake flow of Mi and Antonia.38 Accordingly, we are confident that the experimental data from the
present single-wire measurements should not lead to generally wrong conclusions.

Calibrations of the hot-wire were conducted, prior to and after each set of measurements, using a
standard static Pitot tube located side by side with the probe in the potential core of the jet, where the
velocity field is nearly uniform over the space occupied by the sensor and prongs. For each Uj or Red,
different ranges of velocity were used in calibration from 0.5–3 m/s to 0.5–15 m/s. The calibration
data were well fit using either the 3rd polynomial (preferred) or King’s law, which virtually resulted
in nearly identical velocity results. Instantaneous velocity signals obtained were low-pass filtered
with an identical cutoff frequency of fc = 9.2 kHz, the maximum value set by the anemometer,
for all measurements to eliminate excessively high-frequency noise (see Sec. III B for a detailed
filtering process) and also to avoid any aliasing. To obtain the maximum possible signal-to-noise
ratio, the mean voltages were sampled and removed from the signals by means of the offset and the
remaining fluctuations were amplified by a factor of 3–6 before they were sampled. Then the voltage
signals set within (0–3) voltages were amplified appropriately through circuits. They were digitized
on a personal computer at fs = 18.4 kHz (versus the hot-wire response frequency ≈ 100 kHz) via a
12 bit A/D converter and each record had duration of about 30 s. In addition, the control of hot-wire
position and data acquisition was accomplished using the National Instruments software LabVIEW,
as indicated in Fig. 1.

B. Limited hotwire spatial and temporal resolutions and their corrections

The present hotwire probe has a limited overall resolution due to its finite spatial dimensions and
temporal response. Specifically, the spatial resolution was determined by the wire diameter dw =
5 μm and effective length �w ≈ 1 mm, while the temporal resolution depended upon the sampling rate
fs = 18.4 kHz. Note that the ratio �w/dw ≈ 200 is required so that both a nearly uniform temperature
distribution in the central portion of the wire and a high sensitivity to flow velocity fluctuations can
be achieved.37, 38 The present study corrected the spatial attenuation of the single wire due to �w ≈
1 mm using the procedure of Wyngaard,39 which was developed in spectral space to account for the
�w integration effect on Fourier components of the velocity. A very brief description is given below.

The one-dimensional energy spectra, �w(k1) and �nw(k1), of the measured fluctuating velocity
subject to the wire-length effect or not can be expressed, respectively, as

�nw(k1) =
∞∫

−∞

∞∫
−∞

E(k)dk2dk3 (11)

and

�w(k1) =
∞∫

−∞

∞∫
−∞

[sin2( 1
2 k2�w)/( 1

2 k2�w)2]E(k)dk2dk3, (12)

where k is the wavenumber vector with streamwise, lateral, and spanwise components k1, k2, and

k3; |k| = k =
√

k2
1 + k2

2 + k2
3. For isotropic turbulence, � is related to E(k) by the relation

� (k) = � (k) = E (k)
(
k2

2 + k2
3

)
/(4πk2),

see Ref. 37. Following Antonia and Mi,40 we use a relatively simple and convenient approach to
derive E(k) from �w(k1) via the well-known isotropic relation

E(k) = k2

(
∂2�w

∂k2
1

)
k1=k

− k

(
∂�w

∂k1

)
k1=k

. (13)
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The resulting distribution of E(k) can then be utilized as input for Eqs. (11) and (12). This procedure
takes into account the effect of the wire length through the ratio �w(k1)/�nw(k1) which is applied
to the spectral content of the velocity and, consequently, the energy dissipation rate estimated by
the local isotropic form ε = 15ν〈(∂u/∂x)2〉. In general, the correction for the u-RMS, 〈u2〉1/2, due to
spatial attenuation of �w ≈ 1 mm is within 1.3% of all the original data and that of ε is from 12% to
1.6% for Red = 4050 and from 48% to 9% for Red = 20 100 over the range of x/d = 19–33.

Next, we consider the correction of the measured ε = 15ν〈(∂u/∂x)2〉, where ∂u/∂x
≈ −U−1∂u/∂t ≈ −U−1[u(t + 
t) − u(t)]/
t = [u(t + f −1

s ) − u(t)] fs based on the Taylor’s hy-
pothesis. This correction is for the temporal resolution of 
t = fs−1 due to the limited sampling rate
of fs = 18.4 kHz. Antonia and Mi40 found that the assumption of local isotropy and an assumed form
for E(k), seen in Eq. (13), are not necessary for correcting the measured 〈(∂u/∂x)2〉m. Accordingly,
the corrected streamwise derivative for the present case may be expressed as40, 41

〈
(∂u/∂x)2〉

corr =
∞∫

0

(k1
x/2)2

sin2(k1
x/2)�
m
∂u/∂x (k1)dk1 =

∞∫
0

(k1
x/2)2

U 2 sin2(k1
x/2)�
m
∂u/∂t (k1)dk1,

where 
x = U
t = U f −1
s and k1 = 2π fU−1. Note that �m

∂u/∂t ( f ) is directly measurable. We made
the above corrections for Red ≥ 10 750. At Red = 20 100, for instance, the streamwise distance 
x
varies from 0.27 mm at x/d = 19 to 0.17 mm at x/d = 33. By comparison, the corresponding value
of the Kolmogorov scale was estimated to be η ≈ 0.09 mm at x/d = 19 to η ≈ 0.15 mm at x/d = 33,
from the corrected dissipation rates.

C. Post-filtering scheme

The present properties of small-scale turbulence were obtained using the digital scheme of
filtering high-frequency noise used by Mi et al.30, 31 This iterative scheme obtains “true” values of η

and fK by filtering the measured velocity signal um, where the subscript m means “measured,” based
on Eqs. (11)–(13) below. Suppose that the measured dissipation rate εm can be expressed as

εm = ε[true dissipation] + εn[noise contribution] = γ ε (14)

and γ = (1 + εn/ε) > 1. Substituting Eq. (14) into the definition of Kolmogorov scale, i.e.,
η ≡ (ν3/ε)1/4, leads to

ηm = [ν3/(γ ε)]1/4 = γ −1/4η. (15)

It is then obtained from the Kolmogorov frequency, i.e., fK ≡ U/(2πη), where U is the streamwise
mean velocity, that

fK m = γ 1/4 fK . (16)

The scheme iteratively uses Eqs. (14)–(16) to reduce the noise-contribution in um thus εm by filtering
um at a new value of fKm. The principle is based on the fact that the noise imposes a significantly
greater influence on εm than on both ηm and fKm. For instance, when εm = 5ε, the resulting values of
ηm and fKm are ηm = 0.67η and fKm = 1.5fK.

A great difficulty occurs in directly measuring the dissipation ε (and therefore η). The direct
measurement of ε requires measurements of all 12 gradient correlations in ε (see, e.g., Refs. 21 and
37). This cannot be realized by experimental techniques available either now or in the foreseeable
future. Accurate measurement of any component of ε requires a multi-sensor probe with excep-
tionally high spatial and temporal resolution to resolve the finest-scale or most-rapid fluctuations of
velocity. In this context, the present study had to estimate ε from hot-wire measurements of u(t),
where u(t) was substituted for u1(t) using the isotropic relation ε = 15ν〈(∂u/∂x)2〉 together with
Taylor’s hypothesis 〈(∂u/∂x)2〉 = U−2〈(∂u/∂t)2〉.
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FIG. 2. Dependence on Red of the Kolmogorov frequency fK for x/d = 25 and that of the location xA at which fK = 9.2 kHz.

In general, η decreases with increasing Red and increases with x, and also r, in jet flows.
Correspondingly, fK increases with Red and decreases with x. When Red is sufficiently high, there
must be a particular location of x = xA at which fK = fc (9.2 kHz). It follows that fK > fc for
x < xA where the u signals were already over-filtered at fc = 9.2 kHz (no post-filtering needed)
and also that fK < fc at x > xA where u should be post-filtered necessarily at the cut-off frequency
of fK. On the other hand, for sufficiently small Red, fK turns out to be smaller than fc all along the
jet centerline so that xA = 0 and the post-filtering has to be taken everywhere. Indeed, as shown in
Fig. 2, in the present jet, the zero value of xA occurs at Red ≤ 8050 (indicated) while xA increases
with Red for Red ≥ 8050 (illustrated by a green line). Hence, the present small-scale turbulence
properties shown in Sec. IV are those for x > xA. In addition, Fig. 2 also shows the effect of Red on
fK at x/d = 25. Evidently, as Red is increased, the frequency fK (and thus fc) increases rapidly. Note
that the subscript “m” will be removed below for simplicity.

D. Data processing method and assessment

1. Use of Taylor’s hypothesis

To estimate the small-scale properties with the velocity derivatives or energy dissipation invoking
the isotropic form ε = 15ν〈(∂u/∂x)2〉, the present study had to convert time series into space series
using Taylor’s hypothesis, viz., 〈

(∂/∂x)2
〉 = U−2

〈
(∂/∂t)2

〉
, (17)

where U is the local mean velocity. Based on the work of Mi and Antonia,42 the resulting data,
measured along the jet centerline, were not corrected for the effect of turbulence intensity, although
the relative turbulence intensity 〈u2〉/U is greater than 20% at x/d > 10 in the jet (e.g., Ref. 20).
Note that in the flow of high turbulent intensity, e.g., the present flow, such a hypothesis is expected
to lead to significant errors since in this situation the concept of uniform translation is not appli-
cable. Acknowledging this, using a variety of approaches and assumptions, previous studies (e.g.,
Refs. 42–44) have proposed several corrections to the hypothesis, such as〈

(∂θ/∂x)2
〉 = 〈

(∂θ/∂t)2
〉 [

U 2 + 〈
u2

〉 + 〈
v2

〉 + 〈
w2

〉]−1
, (18)

where θ denotes the fluctuating scalar; u, v, and w are the fluctuating velocity components in the
streamwise, radial, and azimuthal directions, respectively. Equation (18) is strictly valid for locally
isotropic turbulence. Mi and Antonia42 checked the hypothesis (17) and several of its corrections
including Eq. (18) using a passive scalar (temperature) in a circular jet (x/d = 30) with Red =
1.9 × 104. These authors found that Eq. (18) is quite closely satisfied in the fully turbulent region of
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the jet. They argued that the assumptions underpinning Eq. (18), i.e., homogeneity and independence
between small scales and large scales, are approximately satisfied in the flow region of the investi-
gation. Important to the present study, they also revealed that the departure from local isotropy at the
level of the mean square scalar derivatives is very small along the centerline and thus that the usual
form of Taylor’s hypothesis, Eq. (17), is approximately valid on the jet axis, where the difference
between 〈(∂θ /∂x)2〉 and 〈(∂θ /∂t)2〉U−2 is less than 10%, nearly within the measurement uncertainty.

2. Data processing algorithm

The velocity measurements by hot-wire anemometry described in Sec. III A yield the original
streamwise velocity signals Ũm(t) = Um + um(t) and, consequently, the original time derivative

∂um

∂t
≈ 
um


t
= [um(t + f −1

s ) − um(t)] fs . (19)

It follows that the measured dissipation, estimated from the assumption of isotropic turbulence and
Taylor’s hypothesis, can be expressed plausibly by

εm ≈ 15νU 2
m

〈
(∂um/∂t)2

〉 ≈ 15νU 2
m f 2

s

〈
(
um)2

〉
. (20)

Equation (20) corresponds to the first order two-point backward difference stencil used in numerical
simulations. To calculate the derivative more accurately, based on Ref. 45, the present study adopts
the algorithm of high-order spectral-like stencils to calculate the velocity gradient (see Ref. 31 for
more details).

3. Measurement errors and uncertainties

Experimental uncertainties for the mean velocity (U) and turbulence intensity (u′ = 〈u2〉1/2),
which are those directly measured properties, were inferred directly from estimated inaccuracies
in the calibration data and the observed scatter in the results obtained from several repeats of
the similar experiment. For the indirectly measured quantities such as the half-radius (R), energy
dissipation rate (ε), Taylor length micro-scale (λ), and Kolmogorov length scale (η), the method of
propagation of uncertainties was used; those uncertainties resulted from errors in hotwire calibrations
and corrections for finite spatial and temporal resolutions of the hotwire probe, etc. A summary of
the maximum uncertainty ranges of typical quantities estimated for x/d = 20 is given as follows:
[Uc] = ±0.5%, [u′] = ±1.5%, [ε] = ±8.5%, [λ] ≈ ±3.3%, [η] = ±3.5%, [Reλ] = ±3.0%.

E. Nozzle-exit velocity profiles

To quantify the exit conditions of the jet of investigation, the mean and RMS velocities (Ue,
〈u2

e〉1/2) were measured for each of the Reynolds number (Red) at x/d = 0.05 in the radial direction
over the range −0.6 ≤ r/d ≤ 0.6. Radial profiles of Ue/Uj and 〈u2

e〉1/2/U j are presented in Figs. 3(a)
and 3(b), respectively. A dependence of the exit flow on Red is evident. In all cases, approximately
top-hat mean exit velocity profiles are produced. However, the extent of uniformity in the varying
Red profiles differs significantly. As Red increases from 4050 to 20 100, the exit profile becomes
flatter, and the central region of uniformity widens. A consistent trend of initial turbulence intensity
is evident in Fig. 3(b). The peak value of 〈u2

e〉1/2/U j in the shear layer increases with Red, which
coincides with the finding of Deo et al.46 for a plane jet. This trend is expected because increasing
Red must cause a higher instability of the shear layer and thus relatively higher fluctuations of
velocity. Moreover, the relative fluctuation intensity across the entire exit plane rises notably with
increasing Red, despite its value being 〈u2

e〉1/2/U j = 0.9%-1.6% over the central region. It should be
also noted that the exit flow for each Red should be approximately laminar excepting the boundary
layer for high Reynolds numbers.
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FIG. 3. Inflow conditions at x/d = 0.05 for different Red. (a) Normalized mean velocity, (b) turbulence intensity.

Figure 4 illustrates the Reynolds-number dependences of the displacement thickness δ and
momentum thickness θ of the boundary layer at the jet exit. These thicknesses were calculated from
the mean velocity profiles of Fig. 3(a) using the definition equations δ = ∫ ∞

0 (1 − U/Ue)x=0.05ddr
and θ = ∫ ∞

0 U/Ue(1 − U/Ue)x=0.05ddr , respectively. As demonstrated on the plot, both δ and θ

decrease appreciably with increasing Red from 4050 to 20 100. It is also obvious that the two
thicknesses do not become asymptotic over the measured range of Red.

The Red dependences of Ue/Uj, 〈u2
e〉1/2/U j , δ, and θ observed are expected to transmit down-

stream to the flow properties and characteristics of the jet. It is important to note that the initial
alterations of the mean and RMS velocities and the boundary-layer thicknesses, in general, should
not result only from the variation of Red but also from that of the nozzle inner geometric profile (e.g.,
from smooth contraction to sudden contraction or to non-contraction). Nevertheless, given that the
present study used a single nozzle of smooth contraction, the exit Reynolds number Red should act
as the only primary factor for the present case to influence the downstream turbulence properties,
which are examined in Secs. IV and V.
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FIG. 4. Reynolds-number dependences of the displacement thickness (δ) and momentum thickness (θ ) of the boundary layer
at the jet exit.
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FIG. 5. Streamwise variations of (a) Uj/Uc and (b) R/d for Red = 4050–20 100.

IV. REYNOLDS-NUMBER DEPENDENT GLOBAL PROPERTIES

A. Mean velocity decay and spread rates

Figure 5 shows the streamwise variations of the inverse centerline mean velocity Uc normalized
by the exit velocity Uj, i.e., Uj/Uc, and the normalized half radius R/d for 4050 ≤ Red ≤ 20 100. In
the near field (x/d < 6), the Red-related variations of Uc and R are quite irregular and within 2.5%
and 3.0%, respectively. Farther downstream (x/d > 6), the Red-dependence becomes regular and
significant, see Fig. 5. We access the influence of Red on the flow sufficiently downstream using well-
known self-preserving relations, i.e., Eqs. (1) and (2). These relations appear to be approximately
valid downstream from the potential core including the transition region. Figure 6 demonstrates that
the Red dependences of Uc and R embodied in KU and KR are significant for Red < 104 but weaken
with further increasing Red. That is, the present data appear to converge asymptotically at Red ≥ 104
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FIG. 6. Dependence on Red of the mean velocity decay and spread rates (KU, KR) as well as the local Reynolds number
ReD = 4UcR/ν. The best-fit curves of the present data for Red ≤ 104: ——, KU ≈ 0.028 Re1/2

d + 3.54; - - - -, K R ≈
14.2 Re−1/2

d + 0.055. Note that the present data are plotted in solid symbols while those from Table I of Ref. 47 are in open
symbols.
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(note: since the virtual origins are different, the datasets of Uj/Uc and R/d in Fig. 5 for Red ≥ 104 do
not collapse on a single curve). Interestingly, a best-fitting suggests that KU ≈ 0.028Re1/2

d + 3.54
and K R ≈ 14.2Re−1/2

d − 0.055 for Red < 104, both being indicated on the plot. For comparison,
also shown in Fig. 5 are some literature data of KU and KR obtained from circular jets issuing at
high Reynolds numbers from a typical smooth contraction nozzle without any significant flat surface
at the exit, which were compiled by Malmström et al.47 (their Table I). The present asymptotic
values of KU and KR are approximately 6.3 and 0.085, which differ clearly from the averages of the
corresponding literature data, which are 5.85 and 0.095 (indicated). Such disparities are believed
to result from a different exit configuration of the present nozzle which has a large surface at the
exit. Abdel-Rahman et al.48 showed that the effect of an exit wall can reduce the jet entrainment of
ambient fluid and thus the centerline velocity decays by about 20%. Taking this into account, the
present jets should decay and spread at lower rates, thus corresponding to higher KU and lower KR

as shown in Fig. 6. In addition, Fig. 6 reveals that a growth in Red leads to an increase in KU and
also a decrease in KR, thus a reduction of jet entrainment in the far field. This agrees with that of
Deo et al.46 for a plane jet.

Figure 6 also shows the Red dependence of the local Reynolds number defined by the local
jet diameter, which is taken commonly as D = 4R (rather than D = 2R which corresponds to the
jet central region at r ≤ R), e.g., see Ref. 24, and the centerline velocity Uc, i.e., ReD = 4UcR/ν.
According to the self-preserving relations (1) and (2), it is obtained that ReD/Red ≈ 4KUKR. It follows
that ReD ≈ 2.1Red at Red ≥ 104, as seen in Fig. 6. The present asymptotic value of ReD differs
insignificantly from that (≈ 2.22Red) estimated from the literature data, suggesting a trivial influence
from the flat exit surface of the present nozzle, apparently due to the cancellation of different effects
of initial conditions on KU and KR.

B. Centerline evolution of the streamwise turbulence intensity

Figure 7(a) shows the streamwise evolution of the normalized centerline turbulence intensity
〈u2〉1/2/Uc at x/d ≤ 30.5 for different Reynolds numbers. In general, as the jet progresses downstream
from the nozzle exit, initially〈u2〉1/2/Uc increases rapidly, reaches maximum at x/d ≈ 3–4 and then
drops, forming a local peak, which results presumably from the breakdown of primary vortical
structures there; farther downstream, the normalized intensity increases again until it asymptotes
to a constant for self-preservation. However, it appears from this plot that, in contrast to the mean
velocity, the measured variation of 〈u2〉1/2/Uc depends less distinctly on Red, especially in the near
and transition fields at x/d < 10. Yet, a close inspection to the centerline distributions of 〈u2〉1/2/Uc

for x/d ≤ 6 finds that the near-field results exhibit a clear and interesting Red-dependent variation:
e.g., the peak shifts upstream (and becomes stronger) and then downstream (and weaker) as Red

is increased. Besides, based on the averaged value of 〈u2〉1/2/Uc over the region 20 ≤ x/d ≤ 30,
the far-field value of 〈u2〉1/2/Uc denoted by KI is seen to first decrease with Red and then increases
asymptotically to KI ≈ 0.23 at Red ≥ 104, see Fig. 7(b). The establishment of self-preservation for
the RMS velocity nevertheless should not be claimed satisfactorily even when the flow has reached
the maximum location of the present measurements (x/d ≈ 30); the similar case has been observed
in many previous studies, e.g., Ref. 23.

C. One-dimensional power spectral density of the fluctuating velocity

Dimotakis2, 24 proposed that the mixing transition to the fully developed turbulence manifests
itself through a broader spectrum of eddying scales and often marks the beginning of a near −5/3
power-law regime, i.e., the Kolmogorov’s inertial range, in the energy spectrum with increasing
Reynolds number. To inspect this Red-dependent aspect, the centerline data of one-dimensional
spectrum of the fluctuating velocity (�u) for x/d ≈ 30 are presented in Fig. 8(a) for eight values of Red.
Here, �u is defined in 〈u2〉 = ∫ ∞

0 �ud f and f denotes the frequency. It appears that approximately
a power-law region, i.e., �u ∝ f −m, over a certain range of f approximately occurs in the spectrum
approximately for Red ≥ 104, carefully see Fig. 8(b); also, the range span widens as Red increases.
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FIG. 7. (a) Normalized streamwise RMS velocity distribution (〈u2〉1/2/Uc) along the centerline and (b) Red dependence of
the averaged value of KI over the range 20 ≤ x/d ≤ 30.
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the spectra were corrected for the effects of finite hotwire length and measurement sampling rate.
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FIG. 9. Reynolds number dependent spectra of the centerline u measured at x/d = 30. (a) �u(f)[Uc/(2πR〈u2〉)] vs. 2π fR/Uc;
(b) �u(f)[Uc/(2πλ〈u2〉)] vs. 2π fλ/Uc; (c) �u(f)[Uc/(2πη〈u2〉)] vs. 2π fη/Uc, with a model Kolmogorov spectrum for Reλ =
130 from Pope.21 Note that the spectra were corrected for the effects of finite hotwire length and sampling rate.

However, the power-law exponent (m) is not 5/3, the famous exponent of Kolmogorov, derived by
assuming local isotropy, and instead m ≤ 1.5. To confirm this more convincingly, the compensated
spectra f m�u for m = 1.46–1.5 are shown in Fig. 8(b), which indeed enhances the observation.
Although the increase in m is small due to a narrow variation in Red from 10 750 to 20 100, the result
is consistent with, e.g., the previous observation for grid turbulence.49 It has been generally accepted
that, as Reynolds number increases, m increases gradually and approaches 5/3 asymptotically. Note
nevertheless that the value of m ≈ 1.5 was observed by Mi and Antonia50 and Burattini et al.51 for
a circular jet at two very different values of Red ≈ 16 000 and 130 000, respectively. This suggests
that the centerline value of m is highly insensitive to the magnitude of Red. Of note, also, Mi and
Antonia50 found that m increases as the large-scale intermittency factor γ (the fraction of time when
turbulence occurs) decreases, so that the value of m = 5/3 is achieved at a radial location far away
from the centerline where γ < 1 (partially turbulence), compared with constantly turbulence on the
centerline where γ = 1. It is hence suggested that the existence of a power-law range represents the
presence of the inertial range of turbulence no matter whether m = 5/3 or not.

Figures 9(a)–9(c) display the �u distributions normalized, respectively, by R, λ, and η to inspect
the Red dependence of �u under the global-scale (R), inertial-scale (λ), and dissipative-scale (η)
normalizations. Here, it is assumed that the Kolmogorov frequency fK = Uc/2πη, the Taylor-scale
frequency fT = Uc/2πλ, and the global characteristic frequency fG = Uc/2πR. Apparently, all the
data sets collapse very well at 2π fR/Uc < 20 for Red = 8050–20 100, Fig. 9(a), by the global-scale
normalization and at 2π fη/Uc ≥ 0.01 for all Red, Fig. 9(c), by the dissipative-scale normalization. Of
note, the data given in Fig. 9(c) are normalized by the Kolmogorov scales, which appear to compare
perfectly well at 2π fη/Uc ≥ 0.01 with the model Kolmogorov spectrum for Reλ = 130 presented in
Fig. 6.14 of Pope,21 despite m = 5/3 for the latter. When λ is used for normalization, the normalized
distributions collapse quite well over the entire range of f for Red = 8050–20 100, Fig. 9(b), similar
to the result of Burattini et al.51 for different initial conditions.

V. REYNOLDS-NUMBER DEPENDENT SMALL-SCALE PROPERTIES

A. Checks to the appropriateness of the corrected dissipation measurements

As described in Sec. III, the total dissipation rate ε was presently measured from the streamwise
component εxx = 5ν〈(∂u/∂x)2〉 by assuming local isotropy, i.e., ε ≈ 3εxx = 15ν〈(∂u/∂x)2〉. Here,
using the case of Red = 20 100, for which the largest correction for the hotwire length is needed, an
indirect check to the appropriateness of the dissipation measurements is made along the centerline
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FIG. 10. Centerline evolutions of two axial budget terms of the turbulent kinetic energy: the mean advection (MA),
−Uc∂〈u2〉/∂x, and the dissipation rate (DR), −2εxx, at Red = 20 100. Note that the dissipation data were corrected for
the effects of finite hotwire length and sampling rate.

through the assessment of the axial budget of the kinetic energy, which can be expressed as19, 20

0 = −Uc
∂

〈
u2

〉
∂x

− 2

ρ

〈
u

∂p

∂x

〉
−

[
∂

〈
u3

〉
∂x

+ 1

r

∂(r
〈
vu2

〉
)

∂r

]
− 2

〈
u2

〉 ∂Uc

∂x
− 2εxx . (21)

In Eq. (21), on the right-hand side, the first term is for the mean advection (MA), the second for
the pressure work (PW), the third for the turbulence transport (TT), the fourth for the turbulence
production (TP), and the fifth for the DR, all being the axial components. Based on Eqs. (1) and (3)
for Uc and 〈u2〉, it is obtained that

TP = MA = 2d−1U 3
j K 3

U K 2
I

(
x − xU

d

)−4

, (22)

which indicates that the mean advection is equal to the turbulence production along the centerline in
the self-preserving region. Figure 10 illustrates the centerline evolutions of two axial budget terms
of Eq. (21): i.e., the normalized MA, −(Uc∂〈u2〉/∂x)(U−3

j d), and the normalized DR, 2εxx (U−3
j d),

at Red = 20 100. Note that both the corrected and uncorrected values for DR are presented on the
plot. Evidently, the present measurements show that the corrected 2εxx is only slightly (∼10%)
smaller than −Uc∂〈u2〉/∂x. This is consistent with the previous measurements of Panchapakesan and
Lumley19 and Hussein et al.20 in a similar jet but under different initial and boundary conditions.
Lipari and Stansby52 summarized in their review that on the centerline 2εxx ≈ −0.97Uc∂〈u2〉/∂x and
−0.99Uc∂〈u2〉/∂x, respectively, from Refs. 19 and 20. These authors further claimed that “both sets
of centerline values follow the same structure MAc ≡ TPc ≈ |2εxx|c = |TTc − PWc|, irrespective of
the different approaches to modeling dissipation.” (Here, the subscript “c” means “on-centerline.”)
Suppose that the approximation MAc ≈ |2εxx|c is valid and also that the previously measured
dissipations are adequate. Then, the present measurements of |2εxx|c should be considered appropriate
since the present MAc was obtained as properly as those in the previous studies.19, 20 Moreover,
Fig. 10 shows that Eq. (22) works quite well for (x−xε)/d ≥ 18 while MAc exhibits a slower
streamwise decay rate than that obtained from Eq. (22) at (x−xε)/d < 18. The invalidity of Eq. (22)
in the transition region is expected from the fact that the self-preservation of 〈u2〉 there is yet to be
developed, i.e., 〈u2〉1/2/Uc �= constant (see Fig. 7(a)). In addition, the effectiveness of the correction
described in Sec. III B is illustrated in Fig. 10. Clearly, the difference between the corrected and
uncorrected |2εxx|c decreases with downstream distance x. This can be well explained here: as x
increases, the Kolmogorov scale η increases, so the relative hotwire length lw/η decreases, and
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FIG. 11. Normalized on-centerline spectrum of u weighted by f 2 (•, +) and that of ∂u/∂x (—, smoothed) obtained at x/d
= 30 for Red = 20 100 or Reλ ≈ 130 with the model Kolmogorov spectrum (- - - -) for Reλ = 130 from Pope.21 Note that
the data denoted by + were not corrected for the effects of hotwire length and sampling rate.

hence the spatial contamination reduces. As expected, the uncorrected |2εxx|c data do not follow the
power-law x −4.

Also, the appropriateness of the dissipation measurements may be checked by comparing the
Kolmogorov-normalized spectrum of u weighted by f2 and that of ∂u/∂x, i.e., (f/fK)2 �u[Uc/(2πν2fK)]
and fK �∂u/∂x, with the model Kolmogorov spectrum. The comparisons are made in Fig. 11,
which presents the current spectra obtained on the centerline at x/d = 30 for Red = 20 100 or
Reλ ≈ 130 and the model spectrum produced from Fig. 6.14 of Pope21 for Reλ = 130. Pope21

claims that the model spectrum is generally quite accurate at k1η = f/fK > 0.1. In other words,
the spectrum should be fairly trustworthy at high frequencies, i.e., not affected by noise and
spatial resolution, from which the correctness of the measured spectra can be verified. Indeed,
Fig. 11 demonstrates that the present measurements agree well (within 10%) with the model spec-
trum for k1η ≥ 0.2. This provides an indirect support for the appropriateness of the present estimates
of the measured dissipation using the digital filter of Mi et al.30, 31 to remove high-frequency noises
and the correction approach of Antonia and Mi40 for the limited wire length and sampling rate.
The considerable difference observed between the measured data and the model spectrum for k1η

≤ 0.15 reflects the difference noted above that the present inertial-range exponent of the velocity
spectrum is m ≈ 1.5 versus m = 5/3 or 1.67 for the model spectrum.21 In addition, it is interesting to
note that the distributions of f 2�u and �∂u/∂x are highly consistent with each other. This consistence
might derive from two causes: (1) the approximately valid assumption of local isotropy that enables
∞∫
0

�∂u/∂x ( f )d f =
∞∫
0

f 2�u( f )d f and (2) the close connection of the two spectra due to the present

use of ∂u/∂x ≈ −U−1∂u/∂t for �∂u/∂x. On the other hand, such a good consistence of f 2�u and
�∂u/∂x may provide more evidence, though indirect, to further support for the appropriateness of the
present dissipation measurements.

B. Dissipation rate and Kolmogorov length scale

Figure 12 presents the streamwise evolution of the normalized dissipation rate ε∗ = εd/U 3
j for

Red = 4050–20 100. As the jet develops downstream, ε∗ decreases rapidly with downstream distance
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FIG. 12. Streamwise evolution of the normalized energy dissipation rate ε∗ = ε (U−3
j d). Note that the dissipation data have

been corrected for the effects of finite hotwire length and sampling rate.

x; this decrease follows Eq. (6) well for all x ≥ xA or based on all the post-filtering data (see Fig. 2).
However, the region where Eq. (6) is valid should not be only limited for x ≥ xA. Figure 12 shows
that the validity occurs at x/d ≥ 10 for the lowest Red = 4050 while an increase in Red is expected to
widen the valid region for Eq. (6). It follows that the self-preserving state of ε should be established at
least at x/d ≥ 10 for all the measured values of Red ≥ 4050. For Red ≤ 104, as observed from Fig. 13,
the prefactor (Cε) of Eq. (6) increases with Red. For Red > 104, nevertheless, all the measured data
of ε∗ becomes constant and collapses virtually onto a single horizontal line with Cε ≈ 50, suggesting
that ε∗ becomes nearly independent of the Reynolds number. This value of Cε agrees closely with Cε

= 48 obtained by Friehe et al.36 for Red = 1.2 × 105, and was also verified later by Antonia et al.25

for circular jets at three different Reynolds numbers Red = 5.56 × 104, 1.09 × 105, and 4.71 × 105.

0

20

40

60

0 0.5x10
4

1.0x10
4

1.5x10
4

2.0x10
4

2.5x10
4

Eq. (6)

Eq. (7a)

Eq. (7b)

C = 48

5.43 10
-3

(Red-506)

C = 50

Red

C

FIG. 13. Dependence on Red of the prefactor Cε of Eq. (6).
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Figure 13 illustrates, more clearly, the dependence of Cε on Red estimated from Eqs. (6)–(7b). These
estimations are in good agreement, within experimental uncertainties. It is therefore evident that all
Eqs. (6)–(7b) work very well in the circular jet at least for Red ≥ 4050. In addition, it is interesting
to note from Fig. 13 that Cε increases approximately linearly with Red, i.e., Cε ∝ Red, at Red ≤
104. This seems at variance with Eq. (7a): Cεl = Kεl K 2

U K −2
R Re−1

d . However, see Fig. 6, for Red ≤
104, both KU and KR are correlated with Red as KU ∼ Re1/2

d and K R ∼ Re−1/2
d and, consequently,

Cεl ≈ 5.43 × 10−3 (Red – 506), as indicated on the plot. In summary, Fig. 13 suggests that, as the
Reynolds number grows from the lowest value (4050), Cε increases approximately linearly from 20
to 50 at Red ≤ 104 and becomes nearly constant for Red > 104.

Substituting Cε ≈ 50 into Eq. (7b), we obtain Kεh ≈ 0.017 for Red ≥ 104, while Antonia et al.25

obtained the constant of 0.029 with KU ≈ 5.4, KR ≈ 0.1 at Red = 4.71 × 105. For the case of Red

< 104, Cε reduces with decreasing Red. The constant Kεl can be obtained by substituting Cε into
Eq. (7a). The result is that Kεl = 83.5, 82.7, 82.1, and 83.1 for Red = 4050, 5400, 6750, and 8050,
respectively. Here, we take the average of the four values of Kεl as the constant in Eq. (4), i.e., Kεl

≈ 83. To our best knowledge, no previous systematic studies have been performed to obtain Kεl for
Red < 104. In other words, we are likely to have made the first estimation of Kεl for any turbulent
flow, even though presently invoking the isotropic assumption and Taylor’s hypothesis. Hence, in
the self-preserving far field of the circular SC jet, the typical centerline dissipation rate may be
estimated roughly from ε ≈ 83νU 2

c /R2 for Red < 104.
Figure 14 shows the centerline evolution of the normalized Kolmogorov length scale η/d for

Red = 4050–20 100. Evidently, η increases linearly with x for each value of Red, thus validating
Eq. (8) or η/d = Cη [(x−xη)/d]. Figure 14 also demonstrates that η decreases with increasing Red.
To inspect the Red dependence of η/d in more detail, the measured data of η/d is substituted to
Eq. (8) to obtain Cη directly. The results are presented in Fig. 15. For high Reynolds numbers at Red

≥ 104, Cη is proportional to Re−3/4
d and can be expressed as Cη = 50−1/4Re−3/4

d ≈ 0.37Re−3/4
d . It

follows that

η/d ≈ 0.37Re−3/4
d (x − xη)/d (23)

for Red ≥ 104. Interestingly, Eq. (23) is nearly the same as that obtained from Antonia et al.25 and also
from Eq. (22) of Dimotakis24 together with his local jet diameter D = 4R ∝ 0.4x. Considering very
different experimental setups and laboratory conditions used by the present and previous studies,
this agreement appears to imply that the variation of Kolmogorov scale is weakly dependent on (or
insensitive to) the initial and boundary conditions. By comparison, Fellouah and Pollard27 reported
a much smaller prefactor (1601/4 ≈ 0.28) of Eq. (23); they attributed the significant difference
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FIG. 14. Streamwise evolution of normalized Kolmogorov length scale η/d for Red = 4050–20 100.
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of about 30% to their application of a flying hotwire (no need of Taylor’s hypothesis) relative
to that of a stationary hotwire by Antonia et al.25 which requires the use of Taylor’s hypothesis.
This is however unexpected because, as shown by Mi and Antonia,42 the error caused by the
hypothesis is less than 10% along the jet centerline. It is anticipated that the lower prefactor resulted
mainly from their data being significantly contaminated by the high-frequency noise. Note that their
fluctuating velocity signals were improperly filtered at a very high frequency (15 kHz), consequently
well underestimating λ and η since the velocity time derivative and thus the dissipation rate were
overestimated, see Ref. 31.

To compare η with D (=4R), the manipulation of Eqs. (2) and (21) obtains that

η/D ≈ 1.1Re−3/4
d (24)

for Red ≥ 104, presently with KR = 0.085 and assuming that xη = xR. The ratio η/D is somewhat
different from that obtained by Dimotakis,24 which is η/D ≈ 0.95Re−3/4

d ; this is reflected in the
prefactor (1.12 versus 0.95). Some explanation follows. As noted earlier, the exit surface of the present
nozzle weakened the jet’s entrainment and the spreading rate, thus decreasing D, but imposed little
influence on η. In this context, there is a point to make here: the presence of the exit surface or
generally the inlet condition affects the far-field global characteristics but not fine-scale turbulence
of the jet.

For lower Reynolds numbers at Red < 104, Fig. 15 suggests that the prefactor Cη can be
obtained by Cη = C1/4

εl Re−3/4
d ≈ 3.8Re−1

d , which agrees very well with that from the measured data of
Fig. 14. It follows that, for Red < 104, the magnitudes of the Kolmogorov scale η relative to the jet
exit and local diameters (d, D) can be approximated by

η/d ≈ 3.8Re−1
d (x − xη)/d (25)

and

η/D ≈ 0.065Re−1/2
d , (26)

respectively, which differ considerably from those, i.e., (23) and (24), for high Reynolds numbers.

C. Taylor length scale and turbulent Reynolds number

Figure 16 shows the normalized Taylor length scale λ/d along the centerline for Red = 4050–
20 100. Like η/d (see Fig. 13), the centerline λ/d also increases linearly with downstream distance,
thus proving Eq. (9). It is also evident that λ decreases as the Reynolds number is increased. To
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further examine the effect of Red on λ, Fig. 16 displays the results of Cλ estimated from the λ/d data
via Eq. (9). For Red < 104, Cλ decreases inversely linearly with the Reynolds number, with CλRed

≈ 75.4. In other words, for the present jet at Red < 104, the ratios λ/d and λ/D can be obtained by

λ/d ≈ 75.4Re−1
d (x − xλ)/d, (27)

λ/D ≈ 1.25Re−1/2
d . (28)

It is also deduced from Figure 17 that, for Red ≥ 104, Cλ is proportional to Re−1/2
d so that

CλRe1/2
d ≈ 0.82. Therefore, for the present jet of high Reynolds numbers, the ratios λ/d and λ/D are

different from Eqs. (27) and (28) and can be expressed as

λ/d ≈ 0.82Re−1/2
d (x − xλ)/d, (29)

λ/D ≈ 2.41Re−1/2
d . (30)
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Note that the prefactor of Eq. (29) is slightly smaller than that (=0.88) obtained by Antonia et al.25

while that of Eq. (30) is bigger than that (=2.3) of Dimotakis.24 These differences, and also those
associated with η, are likely due mainly to the discrepancies in nozzle exit geometry (the point has
been made earlier). Again, as expected, the prefactor (0.79) of Eq. (29) from Fellouah and Pollard27

was rather underestimated, highly likely due to an improper filtering of the high-frequency noise
from the velocity signals.

Figure 18 presents the centerline evolution of Reλ (turbulent Reynolds number) for Red =
4050–20 100. Apparently, Reλ is nearly constant along the centerline of the circular jet for any given
value of Red, even though the scattering of each data set is obvious. Note that this evident scatter
results mainly from the ratio KI = u′/Uc (see Fig. 7). Taking the average of Reλ for x/d ≥ 20, the
mean values of Reλ were obtained and are plotted against Red in Fig. 19. Apparently, for Red > 104,
the relationship of Reλ with Red can be expressed approximately as (indicated on the plot)

Reλ ≈ 1.16Re1/2
d , (31)

where the prefactor (1.16) is smaller than that (1.74) obtained from Antonia et al.25 and greater than
that (1.04) from Champagne44 for Red = 3.7 × 105. Nevertheless, the data from the two previous
studies were obtained only at one or three high Reynolds numbers, compared with ours from five
values of Red. Dimotakis24 and his co-workers (e.g., Ref. 53) obtained that Reλ ≈ 1.4Re1/2

d , based
on the measurements in the jets issuing from a conventional smooth-contraction nozzle (without a
large exit surface). In addition, to compare the ReD–Red and Reλ–Red relationships, the dependence
of ReD on Red is also shown in Fig. 19; it is well proven that ReD ≈ 2.1Red at Red ≥ 104.

Although the present results of η/d and λ/d are nearly identical to those of Antonia et al.,25 there
are relatively large discrepancies between the two investigations with respect to Reλ. This is mainly
due to the measurement differences in the turbulence intensity KI = 〈u2〉1/2/Uc, which might result
from different initial and boundary conditions. On the other hand, this implies that behaviors of the
smallest-scale turbulence are more universal or depend less on the flow configuration or initial and
boundary conditions.

D. Comparison of virtual origin locations xU, xR, xε, xλ, and xη

When a turbulent flow has reached the self-preserving state, ideally, the self-preservation is
expected to apply for all different scales from the smallest to the largest in the flow. Hence, the five
virtual origin locations associated with Eqs. (1), (2), (6), (8), and (9) are expected to be identical,

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.63.180.147 On: Wed, 13 Aug 2014 16:50:17



075101-22 Mi, Xu, and Zhou Phys. Fluids 25, 075101 (2013)

0

50

100

150

200

0 5000 10000 15000 20000 25000
0

20000

40000

60000

80000
15

1/2
 K

2
u  K

2
U C

 -1/2
l  Re

 1/2
d

15
 1/2

 K
 2
u  K

 2
U C

-1/2
h  Re

 1/2
d

data from Eq. (10)

ReD vs. Red

Re

ReD

ReD= 2.1 Red

Re = 1.16 Re
1/2

d

Red

R
e

R
e  D

FIG. 19. Dependence of Reλ and ReD on Red.

i.e., xU = xR = xε = xλ = xη, according to the traditional assumption (e.g., Hinze37 and Chen and
Rodi54). However, Fig. 20 demonstrated that these virtual origin locations differ appreciably and that
the resulting differences should not derive just from the measurement inaccuracy. This observation
is consistent with the previous work (e.g., Ref. 55) that xU is often different from xR, even both
being for the mean flow. In this context, we anticipate that all the five locations are truly distinct.
Moreover, Fig. 20 reveals that, as Red increases, all the virtual origins initially move upstream, reach
their minimum values, and then turn to shift downstream. Consistent with the above observations,
all the minima appear to occur at Red ≈ 104.

E. Skewness and flatness factors of ∂u /∂x

Figures 21 and 22 show, respectively, the skewness and flatness factors (S, F) of the longitudinal
velocity derivative ∂u/∂x versus the Taylor Reynolds number Reλ, where the two factors are defined
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by S ≡ 〈(∂u/∂x)3〉〈(∂u/∂x)2〉−3/2 and F ≡ 〈(∂u/∂x)4〉〈(∂u/∂x)2〉−2. For comparison, all the data
compiled in Ref. 1 for various turbulent flows are also displayed. Apparently, the present data for
both factors match well with those obtained previously for different flows. In the present range of
Reλ ≈ 80–170, both S and F generally increase with increasing Reλ. This can be extended to the
whole range of Reλ when considering previous investigations in the atmosphere, in laboratory flows,
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and from numerical simulations. Such an observation is obviously at variance with the hypothesis
of Kolmogorov33 or K41 for short, in which both the skewness and flatness factors of velocity
derivatives are assumed to be constant and independent of Reynolds number. This suggests that K41
be an over-simplified model and cannot be regarded as universal.1

Significantly, unlike the quantities reported above, the variations of both factors do not exhibit
any considerable Red-dependent distinctions on the two sides of Red ≈ 104 or Reλ ≈ 130. In other
words, the regime change of turbulence or the occurrence of any critical Reynolds number is not
reflected in the Reynolds number dependence of S or F.

In addition, it should be noted that some previous investigations (e.g., Refs. 55 and 56) showed
a decrease of the skewness factor with increasing Reλ. Such a likely false Reλ variation of S is
believed to result from the measurement error due mainly to the use of an inappropriate (low) cutoff
frequency in collecting the velocity signal. This is clearly demonstrated in Fig. 21 with the data of
S obtained when using the Kolmogorov frequency fK = 207 Hz at Red = 4050 as a single cutoff
frequency (fc) for all the Reynolds numbers.

VI. FURTHER DISCUSSION

The preceding experimental results of Figs. 5–9 and Figs. 12–22, respectively, show differences
in global flow characteristics and those in the small-scale turbulence caused due to different Reynolds
numbers. Apparently, there is a critical value of Reynolds number (Recr) below and above which
turbulence properties are related with Reynolds number in distinct fashions. In the self-preserving
region of the present jet, this critical value is obtained to be Red,cr ≈ 1.0 × 104 for the exit Reynolds
number or Reλ,cr ≈ 130 for the local turbulence Reynolds number which delimits two regimes of
turbulence, i.e.,

� Regime (i): partially developed turbulence at Reλ < Reλ,cr, where the energy containing and
dissipative scale ranges overlap so that it is viscosity-dependent;

� Regime (ii): fully developed turbulence at Reλ ≥ Reλ,cr, where a decoupling has occurred
between the small and large scales or the inertial range exists that is independent of viscosity.
(This fully developed turbulence should not be considered identical to the Kolmogorov turbu-
lence that refers to an ideal state of turbulence which is locally isotropic and homogeneous,
independent of any flows. Note also that the inertial range of the centerline velocity does not
really follow the −5/3 power-law even at rather high Reynolds numbers.51)

It has been proven in Figs. 12 and 13 (and other plots indirectly) that the energy dissipation rate
in the present circular jet can be expressed approximately as ε ≈ KεlνU 2

c /R2 for Reλ < Reλ,cr in
regime (i) and ε ≈ KεhU 3

c /R for Reλ ≥ Reλ,cr in regime (ii). It must be acknowledged here that the
validity of ε ≈ KεhU 3

c /R in the circular jet has also been confirmed via Eq. (6) by several previous
investigations such as those reported in Refs. 25 and 36. Nevertheless, the estimate of Kεh is not
identical from the different investigations (e.g., Kεh ≈ 0.017 from the present study versus Kεh ≈
0.029 from Ref. 25), perhaps due mainly to distinct jet’s initial and boundary conditions.

Besides, Batchelor and Townsend57 made the first direct attempt, using grid turbulence, to test
the validity of the scaling law, which is somehow equivalent to Eq. (5), i.e.,

ε ≈ A〈u2〉3/2/L , (32)

where A is a constant for sufficiently high Reynolds number and L is the turbulence integral scale.
(Note that this scaling law was originally proposed by Taylor.58) It was found that the grid-turbulence
data for εL/〈u2〉3/2 does not appear to be inconsistent by and large with its constancy over wide ranges
of the decay time and Reynolds number, if the constancy of εL/〈u2〉3/2 is regarded as an asymptotic
expectation. Yet, as noted in Ref. 28, the relatively large scatter in Batchelor’s57 data should be
correlated to some Reλ dependence of εL/〈u2〉3/2 at least for Reλ ≤ 41. Sreenivasan28 checked
this speculation over a greater range of Reλ through collecting a number of previous data sets for
grid turbulence produced by biplane square meshes, and indeed he found that εL/〈u2〉3/2 generally
decreases with increasing Reynolds number at Reλ < 50. On the other hand, he also confirmed the
good constancy of εL/〈u2〉3/2 approximately at Reλ ≥ 50. Lately, Mydlarski and Warhaft49 showed
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FIG. 23. Dependence of A = εL/〈u2〉3/2 on Reλ. Symbols: �, present jet turbulence; +, grid turbulence from biplane
square meshes, compiled by Sreenivasan;28 �, DNS of periodic box turbulence (forced), Jimenez et al.;60 �, DNS of
periodic box turbulence (decaying), Wang et al.;61 ©, DNS of periodic box turbulence (forced), Wang et al.;61 �, DNS of
periodic box turbulence (forced), Yeung and Zhou;62 �, DNS of periodic box turbulence (forced), Cao et al.;63 
, DNS
of periodic box turbulence (forced), Kaneda et al.;64 ●, DNS of periodic box turbulence (forced), Gotoh et al.;65 �, grid
turbulence generated by active meshes, Mydlarski and Warhaft;49 �, plate wake, Burattini et al.;66 ⊕, circular cylinder wake,
Burattini et al.66

that the scaling relation applies very well in a slightly different grid turbulence generated by active
grid for Reλ = 100–473.

The above findings for grid turbulence, especially that of Sreenivasan,28 appear to suggest that
Eq. (4) for the low-Reλ regime (i) can be reconciled to Eq. (32) or Eq. (5) so long as A is not
treated as being independent of Reynolds number. In fact, re-forming Eq. (4) via the prefactors of
Eqs. (1)–(3) obtains that

ε ≈ (
Kεl K

−1
U K −1

R Re−1
d

)
U 3

c /R = (
Kεl K

−1
U K −1

R K −3
I C1 Re−1

d

) 〈
u2

〉3/2
/L (33)

and hence that A = Kεl K
−1
U K −1

R K −3
I C1 Re−1

d (where C1 = L/R is correlated with Red) for the jet in
regime (i). For consistency, Eq. (5) is also converted to the following:

ε ≈ (
Kεh K −3

I C1
) 〈

u2
〉3/2

/L (34)

so that A = Kεh K −3
I C1 for the jet in regime (ii). Certainly, if reconciling Eqs. (4) and (5) into

Eq. (32), the quantity A is a function of Red for Reλ < Reλ,cr since all the quantities but Kεl in the
round brackets of Eq. (33) are dependent on Red whereas, distinctly in Eq. (34), KI, Kεh, and C1 and
thus A = Kεh K −3

I C1 are all uncorrelated with the Reynolds number for Reλ ≥ Reλ,cr. To summarize,
Eq. (32) now can be expressed below for the round jet

ε ≈ A

〈
u2

〉3/2

L
, where : (i) A = Kεl K

−1
U K −1

R K −3
I C1 Re−1

d for Reλ < Reλ,cr ,

(32′)
(ii) A = Kεh K −3

I C1 for Reλ ≥ Reλ,cr .

To check the validity of Eq. (32′) for any Reynolds number of the turbulent jet against grid turbulence,
the estimates of A = εL/〈u2〉3/2 for the present flow were made for the eight Reynolds numbers of
investigation; note that L was determined by a method similar to that of Refs. 28 and 49, i.e., L ≈
1/k1 = Uc/2π fo where k1 is the streamwise wavenumber and fo is the frequency at which a broad
peak of frequency times u-spectrum, i.e., f ·�u, occurs approximately. The results against Reλ are
presented in Fig. 23 and compared with those for grid turbulence reproduced from Refs. 28 and 49,
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and for homogeneous turbulence of a periodic box, partly compiled in Ref. 59, from direct numerical
simulations (DNS),60–65 and also for wakes.66 For Reλ < 130, the present A obviously decreases
notably with increasing Reλ. This variation agrees qualitatively with those of the grid turbulence and
the homogeneous (periodic-box) turbulence. The asymptotic value of A (denoted by A∞) is achieved
at Reλ ≈ 130 for the present jet; namely, A = εL/〈u2〉3/2 becomes nearly independent of Reλ at Reλ ≥
130. Figure 23 also demonstrates that A∞ differs appreciably for various flows. Explicitly indicated
on the plot are A∞ ≈ 0.7 for the present jet and some cases of the homogeneous turbulence,60, 61 A∞ ≈
0.5 for more cases of turbulence,61–66 A∞ ≈ 0.9 for the grid turbulence of Mydlarski and Warhaft,49

and A∞ ≈ 1.05 for that of Sreenivasan28 (quasi-homogeneous flows) whose data were obtained from
a number of previous investigations. The above discrepancies in A∞ are most likely to result from
varying configurations of the large-scale structure in different turbulent flows.59 Despite A∞ varying
for different flows, according to Fig. 23, A = εL/〈u2〉3/2 in general decreases with increasing Reλ

until Reλ = Reλ,cr. When Reλ > Reλ,cr, there is a good constancy of εL/〈u2〉3/2, i.e., A = A∞.
In this context, some comments are worthwhile on the “mixing transition” in turbulent flows

proposed by Dimotakis.24 (Note that the mixing here means the small-scale or molecular mixing.)
He found the evidence for the “mixing transition” which occurs, in many free shear flows, within
the range of ReL = 10 000–20 000 or Reλ = 100–140; the large-scale Reynolds number ReL ≡
〈u2〉1/2 L/v where L is the characteristic large-scale length. He regarded this ReL or Reλ range as
universal and believed that such a transition is the signature of establishing a truly three-dimensional
small-scale structure or its occurrence is a necessary requirement for fully developed turbulent flows.
He provided an explanation for the “mixing transition” by introducing a new inner length scale l
called the laminar-layer thickness. This scale is generated by viscosity after a sweep of size L across
the transverse turbulent layer. In the usual hierarchy of turbulent scales, this scale is located in η �
r � l � L, where r represents the smaller scale. It was proposed that a turbulent flow cannot be
considered fully developed until the smaller scales are decoupled from those scales of l. Dimotakis24

utilized the scaling arguments to suggest that the decoupling will not occur until Reλ = 100–140.
He then indicated that, as Reynolds number increases from a small value to a value approaching
some minimum Reynolds number (Remin) for the fully developed turbulence, the jet can generate
ever-increasing interfacial area between the mixing species, thereby increasing the smallest-scale
mixing rate. He further claimed that, beyond this transition region, i.e., for Red > Remin, the Reynolds
number dependence of the amount of mixed fluid can be expected to be weaker. We understand that
his Remin is comparable to the critical Reynolds number which defines the border of regimes (i)
and (ii).

The present Red dependence of the small-scale flow properties appears to support, to some
degree, the above claim of Dimotakis.24 For instance, an increase in Red causes the normalized
dissipation rate (εdU−3

j ), and hence the smallest-scale mixing rate, to grow approximately linearly
for Red ≤ 0.8 × 104 whereas for Red > 104 the growth rate becomes nearly invariable (apparently
reflected by εdU−3

j ≈ constant), see Figs. 12 and 13. However, the critical Reynolds number (e.g.,
Reλ,cr) is unlikely to lie in just a narrow range of Reynolds numbers as suggested by Dimotakis24

generally for any turbulent flows; actually, his suggestion seems incorrect even for similar flows such
as round jets issuing from similar-geometry nozzles of different size.67 His claim that the resulting
fully developed turbulence of any flow requires the critical Reynolds number of Reλ,cr = 100–140
to maintain the state cannot be regarded quite correct, as manifest in Fig. 23. Evidently, a lower
value of Reλ,cr ≈ 50 takes place in the grid turbulence28 than in the DNS box turbulences59–64 (Reλ,cr

≈ 90–200) and also in the present jet (Reλ,cr ≈ 130). Our recent measurements suggest that the
fully developed turbulence of a jet from a long square-pipe occurs at Reλ > 250 (not shown here).
Furthermore, a number of other experimental investigations66, 68, 69 clearly demonstrated that Reλ,cr

≈ 200–600 or even higher, see Fig. 2 of Ref. 65. Hence, we can confidently conclude that, in general,
Reλ,cr or the Reynolds number range for the mixing transition should vary from flow to flow and
also that the variation range certainly should be greater than that of 100 ≤ Reλ,cr ≤ 140.

Moreover, Dimotakis24 has not made it clear whether the “mixing transition” region in any type
of turbulent flows, e.g., turbulent jets, is abrupt or gradual, although it appears to occur within a
narrower range of Reynolds numbers than the transition from a steady laminar flow to unsteady fully
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turbulent flow. Very unfortunately, to our knowledge, previous investigations of the Red effect on the
small-scale turbulence in a jet (e.g., Refs. 25 and 51) often employed 2-3 greatly different values of
Red, including none or only one low value (<104), which are obviously insufficient to determine the
“transition region” accurately. This also applies for the study of Fellouah and Pollard27 who used
totally five values of Red but only one (i.e., Red = 6000) for the case of Red < 104. The present study,
however, used eight Reynolds numbers with four either below or above Red = 104 and revealed that
the “transition region” should occur in the range of Red = 0.8× 104–1.0 × 104. That is, the mixing
transition should be accomplished over a fairly small range of Reynolds numbers.

Important to note as well, the turbulence properties in regime (ii) appear to be affected by the
magnitude of the critical Reynolds number. The effect is more evident for low Reynolds number.
This may account for the significant departure from 5/3 of the inertial-range exponent (m) of the
u spectrum, i.e., ϕu ∼ ε2/3k−m , see Fig. 8. For the present jets at Reλ = 130–164, the exponent
was measured to be m = 1.46–1.5, versus the asymptotic value of m = 5/3 which can be obtained
only at much higher values of Reλ, e.g., at Reλ > 1000 in grid turbulence.49 It is deduced that,
if a change of flow alters the critical Reynolds number, the scaling exponent and perhaps other
turbulence properties in regime (ii) will vary. In other words, the fully developed turbulence may be
greatly affected by the critical Reynolds number or the onset Reynolds number of the inertial range.

At last, a discussion is worthwhile on the likely effect of initial flow conditions on the critical
Reynolds number, which draws up the boundary of regimes (i) and (ii), and the mixing transition
of the far-field jet. Mi et al.7 found that both the initial conditions and the near-field structures of
the circular jets from the SC and long pipe (LP) nozzles are quite distinct. The SC nozzle, from
which the present jets issued, generally produces a “top-hat” (largely uniform) mean velocity profile
and a thin (laminar) boundary layer at exit, thus easily generating the natural shear-layer instability
and uniform potential core. Consequently, in the near-field region of these jets, well-defined vortical
structures are present that exhibit the roll-up, pairing, and break-up process. In contrast, the LP nozzle
produces a power-law profile of the mean velocity and a very thick fully turbulent boundary-layer at
exit, then resulting in the non-uniform velocity in the “potential core” and the absence of large-scale
coherent structures in the near field.7 Accordingly, one would anticipate that the alteration of Red

should lead to greater changes of the near-field structure and then the far-field properties in the SC
jet than in the LP jet. Indeed, Mi et al.7 demonstrated that the asymptotic centerline decay rate of the
mean scalar field of the SC jet depends on Reynolds number while that of the LP jet does not. It is
therefore envisaged that, if the exit boundary layer of the present jet were not laminar but turbulent,
e.g., issuing from a LP nozzle, the critical Reynolds number would increase in order to maintain the
state of the fully developed turbulence, thus resulting in a higher (even slightly) value of the scaling
exponent of the velocity spectra.

VII. CONCLUSIONS

This study has successfully clarified by experiments the effect of inflow Reynolds number
(Red) on typical global and small-scale turbulence properties from the transition region to the (self-
preserving) far-field region of a circular jet. The results were obtained for eight Reynolds numbers
between Red = 4050 and Red = 20 100, with four below and four above Red = 104. By comparison,
to our best knowledge, all previous investigations of the Red effect on circular jets (e.g., Refs. 25,27,
and 51) used two to five greatly different values of Red, including none or only one low value that
is less than Red = 104. Hence, the present measurements of small-scale turbulence properties may
represent closely the true, Red-dependent variations of the mean dissipation rate ε, the Kolmogorov
length scale η, the Taylor micro-scale λ, although their estimations, as usual, require the assumption
of local isotropy and also Taylor’s hypothesis. Antonia and Mi70 and Mi and Antonia42 found by
experiments that both assumptions work well for the scalar dissipation properties along the centerline
of the circular jet in the far field. Their results should apply for the energy-dissipation properties. In
this sense, based on the analyses provided in Secs. IV–VI, we can draw the following conclusions on
the Red influence of the present jet flow, some of which may apply generally for any other turbulent
flows:
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(1) The model of the two Reynolds-number-based regimes of turbulence proposed in, e.g.,
Tennekes and Lumley,32 applies well for the circular jet. That is, the critical value for the
Taylor microscale Reynolds number (Reλ) occurs at Rλ,cr ≈ 130 which delimits the following
two regimes of turbulence:

� Regime (i): partially developed turbulence at Reλ < Reλ,cr where the energy containing and
dissipative scale ranges overlap so that it is viscosity-dependent;

� Regime (ii): fully developed turbulence at Reλ ≥ Reλ,cr, where a decoupling occurs between
the small and large scales or the inertial range exists with no viscous effect.

(2) In regime (i), the rates of the mean flow decay and spread (KU and KR, see Eqs. (1) and (2)) of
the jet vary with Red in the forms of KU ∝ Re1/2

d and K R ∝ Re−1/2
d , but these rates become

independent of Red in regime (ii).
(3) Distinct fashions of variation with Reynolds number in regimes (i) and (ii) have been found

for Cε, Cη, Cλ and CRe, the prefactors of Eqs. (6)–(10), which formulate the dependences of
ε, η, and λ on Red and x in the self-similar region.

(4) The mean dissipation rate for the circular jet can be estimated by the centerline velocity
(Uc) and half-radius (R) through ε ≈ KεlνU 2

c /R2 in regime (i) and ε ≈ KεhU 3
c /R in regime

(ii), where Kεl ≈ 83 and Kεh ≈ 0.016 from the present measurements. Although the relation
for regime (ii) have been well approved by previous measurements in turbulent jets or other
turbulent flows, where Uc and R are regarded to represent the characteristic scales, the present
study appears to be the first that has experimentally confirmed the relation ε ≈ KεlνU 2

c /R2,
at least in turbulent jets, for regime (i) in detail.

(5) The Red dependences of the small-scale properties obtained from the present jet appear to
back up the concept of “mixing transition” proposed by Dimotakis.24 However, the critical
Reynolds number for the “mixing transition” in general should be dependent upon both initial
and boundary conditions, vary from flow to flow, and vary over a range greater than that of
Reλ,cr = 100–140 as suggested by Dimotakis.24 In fact, the lower limit of Reλ,cr is revealed to
be lower than 100 and the upper limit to be higher than 140.

In addition to the above Reynolds number effects, it is worth noting that the alteration of jet-
exit boundary conditions appears to impact notably on the global far-field characteristics but have
considerably weaker influence on the fine-scale far-field turbulence in the jet. The present work also
suggest that the existence of a power-law range should represent the presence of the inertial range of
turbulence no matter whether or not the spectral power-law exponent is −5/3, a value which may be
reached at extremely high local Reynolds numbers, such as Reλ ∼ 104 as suggested by Mydlarski
and Warhaft49 based on grid turbulence.
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