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Abstract
The experimental work on fine-scale properties of turbulence has so far been based mainly on
hot-wire and cold-wire measurements. These measurements often suffer from contamination
by electronic (including thermal, shot, flicker, burst, etc) noise or from over-filtering by
somewhat arbitrary, inappropriate filter settings. This may be overcome by a fast-convergent
iterative scheme of filtration developed recently by Mi et al (2005 Phys. Rev. E 71 066304).
The present study is carried out (1) to investigate the effectiveness of the scheme using
velocity signals (um) obtained from hot-wire measurements in both circular and plane
turbulent jets and (2) to assess the effect of the low-pass-filter cut-off frequency on
measurements of various small-scale turbulence properties. The results reveal that the
electronic noise in um, if not cleaned, may seriously contaminate the fine-scale properties of
turbulence derived from um, consequently yielding wrong estimations of typical scales, such as
Kolmogorov and Taylor scales. After removing the noise contribution properly, however, these
characteristic scales are all obtained appropriately and follow closely their self-preserving
relations which have been well confirmed in the past.

Keywords: fine-scale turbulence, digital filter, high-frequency noise

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Previous experimental research into fine-scale turbulence has
been based predominantly on hot-wire (velocity) and cold-wire
(temperature) measurements (e.g. [1]), with some on imaging
measurements (e.g. [2, 3]). The skill of appropriately filtering
those measured signals is thus believed to be crucial for the
development of knowledge on fine-scale turbulence. While
conventional methods to optimize electronic filter settings to
avoid under- or over-filtering the measured signals may be
devised (e.g. [4–7]), they are either cumbersome or somewhat
arbitrary. It is hence believed that pure signals of fluctuating
velocity, free from noise contamination, have never been
obtained by hot-wire measurements. In other words, those
measured velocity signals reported in the literature should

3 Author to whom any correspondence should be addressed.

always be noise-erred or over-filtered (e.g. [7]), due to the
reasons detailed below. Such an unresolved problem of hot-
wire measurements may be addressed partly by the scheme
of Mi et al [8]. The present study is carried out to underpin
this important issue through velocity measurements in both
circular and plane turbulent jets, the two flows which have
been extensively investigated so far.

Although the noise contamination has a little effect on the
energy spectrum of velocity or is scalar in general when there
is a sufficiently high signal-to-noise ratio (SNR, i.e. the power
ratio between a true signal and the background noise), it has
a great impact on the dissipation spectrum at high frequencies
or low wavenumbers (e.g. [8–11]). Also importantly, the
gradient calculation process acts differently on high- and low-
frequency components of noise, i.e. amplifying the former
and repressing the latter (e.g. [11]). Thus, for the high-
frequency components, a great difference occurs between the
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noise-contaminated dissipation spectrum and the true one,
while their low-frequency components are nearly identical.
The filtering algorithm proposed by Mi et al [8] can filter out
the high-frequency noise in velocity signals and thus make
it possible to obtain the dissipation rate of turbulence kinetic
energy nearly free from noise. However, it is important to note
that, as revealed by Wang et al [11], the noise and resolution
effects are coupled so that different noise levels will lead to
different errors of resolution for the measured mean scalar
dissipation (and so for the energy dissipation).

The fine-scale turbulence properties are associated with
velocity and scalar gradient correlations. Among them is
particularly the average dissipation rate of turbulence kinetic
energy defined by (e.g. [12])

ε = ν

〈(
∂ui

∂xj

+
∂uj

∂xi

)
∂uj

∂xi

〉
(1)

with standard Cartesian tensor notation and summation on
repeated indices; where i (or j ) = 1, 2 and 3 represent the
streamwise, lateral and spanwise directions, respectively. The
reference scales for the fine-scale turbulence are often the
Kolmogorov length scale

η ≡
(

ν3

ε

)1/4

(2)

and also the Kolmogorov frequency scale

fK ≡ U

2πη
, (3)

where ν is the kinematic viscosity and U is the local mean
velocity. However, there is a key question arising here: how
can we accurately estimate these scales from the velocity
measurement?

Raw or non-filtered signals of measured velocity, uim (the
subscript ‘m’ means ‘measured’), are inevitably contaminated
by electronic noise (n), namely

uim = ui + n. (4)

This contamination causes both the spatial and temporal
gradient variances to be overestimated, i.e.〈(

∂uim

∂xj

)2
〉

=
〈(

∂ui

∂xj

)2
〉

+

〈(
∂n

∂xj

)2
〉

(5)

and 〈(
∂uim

∂t

)2
〉

=
〈(

∂ui

∂t

)2
〉

+

〈(
∂n

∂t

)2
〉

, (6)

where i = 1, 2 or 3 but j = 2 or 3 (note: a multi-hot-wire probe
is unable to measure the streamwise derivatives ∂ui/∂x1 due
to the downstream wire being located in the thermal wake of
the upstream wire). The terms 〈(∂n/∂xj )

2〉 and 〈(∂n/∂t)2〉
are redundant from noise. Accurate measurements require
that uim be low-pass filtered at a specific cut-off frequency
fc to eliminate the effect of high-frequency (�fc) electronic
noises. The selection of fc is vital: too high a value will not
clean high-frequency noises sufficiently, while too low a value
will remove some of the true signals. The use of fc = fK

should be the right choice (e.g. [13, 14]). However, fK is
not only a function of the flow but also varies spatially in

almost any flow. That is, it cannot be determined a priori,
although its determination was claimed by all previous studies
with hot-wire measurements (e.g. [4, 13–15]). The hardware
method used by Antonia et al [15] or others to determine fc on-
site for hot-wire measurements of any fine-scale properties of
turbulence is complex, requiring two electronic analog filters, a
differentiator, a real-time spectrum analyzer, visual inspection
and optimization ideally at each measurement location. This
procedure of hot-wire measurements is only realistic where
the number of data points is limited and is prohibitive for
experiments requiring a large number of spatial locations or
flow conditions. In the absence of a simpler procedure, more
arbitrary criteria are usually adopted, so that most previous hot-
wire measurements of ε must be contaminated by noise to some
extent. The importance of this issue is also deduced from Mi
and Nathan [10] who showed that even slightly over-filtering
uim at fc < fK may cause substantial underestimation of the
velocity gradients. The development of the iteratively filtering
scheme by Mi et al [8] appears to have resolved the problem
for hot-wire measurements. This digital scheme described
in the next section can more appropriately obtain fK without
prior knowledge of η.

The present study is carried out to systematically examine
the scheme using the data obtained in both circular and plane
turbulent jets. The objective is threefold.

(1) To reinforce the validity of the scheme, if valid,
through the estimation of various characteristic scales of
turbulence.

(2) To assess the effect of filter on the hot-wire measurements
of various turbulence properties.

(3) To investigate, based on ‘cleaned’ data, the centerline
evolutions of the mean and RMS velocities, the dissipation
rate of turbulence kinetic energy, and the Kolmogorov and
Taylor micro-scales.

Measurements are performed using hot-wire anemometry
at the exit Reynolds number approximately of 20 000 and 9000,
respectively, for the circular and plane jets.

2. Digital scheme of filtration by Mi et al [8]

Suppose that the measured dissipation rate εm is expressed as

εm = ε[true dissipation] + εn[noise contribution] = Cε (7)

with C = (1 + εn/ε) > 1 when filtration is insufficient or C <

1 if over-filtering. Substituting (7) into (2) leads to

ηm = (ν3/Cε)1/4 = C−1/4η. (8)

It is then obtained from equation (3) that

fKm = C1/4fK. (9)

Based on (7)–(9) for the case C = (1 + εn/ε) > 1, Mi et al [8]
have proposed an iterative scheme to obtain the ‘true’ values
of η and fK from the post-processing of the sampled signals of
uim and simultaneously to ‘clean’ uim properly. The scheme
uses (7)–(9) circularly to ‘squeeze out’ the noise-contribution
from uim by filtering uim at new fKm iteratively. The principle
is based on the fact that the noise imposes a significantly greater
influence on εm than on both ηm and fKm. For instance, when
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Figure 1. Iterative scheme of the digital filter (reproduced from Mi et al [8]).
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Figure 2. Centerline spectra of the original and filtered signals of (a) the streamwise velocity um and (b) its derivative ∂um/∂x obtained at
x/d = 30 in a circular jet.

εm = 5ε, the resulting values of ηm and fKm are ηm = 0.67η

and fKm = 1.5fK .

Figure 1 shows a flow chart of the scheme, reproduced
from Mi et al [8]. With the measured u

(0)
im , calculations

of ε(0)
m , η(0)

m and f
(0)
Km can be made from equations (1)–

(3). If
(
f (0)

c − f
(0)
Km

)/
f (0)

c > δ (e.g. taking δ = 10−4),
where f (0)

c = ∞ if originally no filtering, the action of
digitally filtering u

(0)
im at f (1)

c = f
(0)
Km is taken, generating

the new signal u
(1)
im . The above process may be repeated

until
(
f (N)

c − f
(N)
Km

)/
f (N)

c � δ or f
(N)
Km , η(N)

m and ε(N)
m have

converged to their ‘true’ values, i.e. ε = ε(N)
m , fK = f

(N)
Km and

η = η(N)
m .

The applicability of the filtering algorithm has been tested
at various SNRs of the time gradient of the streamwise
velocity (∂um/∂t ; hereafter the subscript ‘1’ for the streamwise
direction is omitted for simplification, i.e. x ≡ x1, um ≡
u1m and u ≡ u1) introduced artificially or obtained at largely
different locations in flow (e.g. SNR decreases significantly
with downstream or radial distance in jet flows). It is revealed
that the scheme works well for all the tested SNRs even down

to SNR = 0.1. Figure 2 shows an example for SNR ≈ 1.72.
It presents the one-dimensional spectra, at different iterations
of filtering, of the streamwise fluctuating velocity um and its
derivative ∂um/∂t obtained on the centerline at x/d = 30 in
the circular jet of present investigation (see section 3 for more
details). The high-frequency noise is reduced drastically at
the first iteration. Then, the spectra converge rapidly to their
‘true’ values in the next two to three iterations. This can also be
seen clearly from the variations of the measured Kolmogorov
and cut-off frequencies, i.e. f

(i)
Km and f (i)

c = f
(i−1)
Km (see

figure 3). The convergent Kolmogorov frequency is fK ≈
3562 Hz and the convergent ratios (〈u2

m〉 − 〈u2〉)/〈u2〉 and
(εm − ε)/ε are approximately 0.6% and 58% (i.e. SNR ≈
1.72).

Note that the present study employs the fifth-order
Butterworth low-pass filter, widely used in the literature, for
application of the scheme. Nevertheless, tests of the third-,
fifth-, seventh-order Butterworth low-pass filters and the tenth-
order Chebyshev low-pass filter show no dependence of the
scheme on the filter type. It should be indicated as well that
both f

(j)

Km and η
(j)
m can generally converge to their ‘asymptotic’
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Figure 3. Variations of the measured cut-off and Kolmogorov
frequencies at different iterations for the circular jet at x/d = 30.

values at the fourth iterations when δ = 10−4. Besides, if the
analog filter is needed for the removal of the aliasing effects,
the application of the scheme will require that the electronic
cut-off frequency be fc � f

(0)
Km = U

(0)
1m(2π)−1(ε(0)

m /ν3)1/4 and
thus that the sampling rate is taken to be fs � 2fc; otherwise,
we suggest that fs � 2f

(0)
Km. In addition, a sufficiently long

sampling duration (e.g. 60 s) should be taken for good
statistical data.

For convenience, in the following, εm, ηm and fKm

represent the original values (i.e. j = 0) and the convergence
results (i.e. j = N) are represented by ε, η and fK .

3. Experimental description

It is well known that a great difficulty occurs in directly
measuring ε and so in the related quantities (η, fK ). The
direct measurement of ε requires direct measurements of all
gradient correlations in (1). Further, the accurate measurement
of any component of ε requires a multi-sensor probe with
exceptionally high spatial and temporal resolutions to ‘feel’
the finest-scale or most-rapid velocity fluctuations. All
these, however, cannot be realized by experimental techniques
available currently and in foreseeable future. Hence, to
validate the digital filter in turbulent flows, this study has
to estimate ε, like most of the previous work, from hot-wire
measurements of the streamwise instantaneous velocity (um)
using the isotropic relation ε = 15ν〈(∂u/∂x)2〉 together with
Taylor’s hypothesis (see section 4.1).

The centerline measurements of um using hot-wire
anemometry are made in a circular jet and also a plane jet.
Here only a brief description for each jet facility is given
below as their details may be found elsewhere (e.g. [16, 17]).

(a) Circular jet: The present jet facility consists of a
cylindrical plenum chamber with an internal diameter of
95 mm and a length of 600 mm. Filtered and compressed
air is supplied through the plenum to a smooth contraction
nozzle, flush with a flat surface of 200 mm in diameter;
see more details in [17]. The nozzle outlet profile is
third-polynomial, contracting from a diameter of 95 mm
to the exit diameter of d = 20 mm. This enables the exit

profile of the mean velocity to be ‘top-hat’-shaped, i.e.
uniform except from near the inner wall. The exit velocity
is Uj ≈ 14.9 m s−1 and the corresponding Reynolds
number Re(≡ Ujd/ν) is approximately 20 100. The
measurements are made along the centerline at x/d �
30, where x is the downstream distance measured from
the nozzle exit.

(b) Plane jet: The jet issues from a rectangular (w × d =
720 mm × 20 mm) slot, with aspect ratio w/d = 36
(note: d represents the height or short side of the
rectangular slot for the plane jet). The inner wall of
each side of the slot is radially rounded with a radius
of r = 36 mm (thus r/d = 1.8) to achieve a ‘top-
hat’ velocity profile at the exit (see [16]). To ensure a
two-dimensional flow, two parallel plates (2000 mm ×
1800 mm) are attached to the short sides of the slot so
that the jet can entrain the ambient only in the lateral
direction. The jet exit velocity is Uj ≈ 6.7 m s−1, which
corresponds to a Reynolds number of Re ≈ 9125. Velocity
measurements are performed over the region x/d � 40.

All the above measurements are made using a single
hot-wire (tungsten) probe, operated by an in-house constant
temperature circuit with an overheat ratio of 1.6. The hot-wire
sensor, aligned perpendicular to the streamwise direction, is
selected to be 5 μm in diameter (dw) and 1.0 mm in length (lw)
so that lw/dw ≈ 200. It is normally suggested that lw/dw �
200, according to Hinze [12] and Champagne et al [18]. For
the present experimental conditions, the frequency response of
the hot wire and anemometer, determined by the square-wave
technique, is about 100 kHz, so that the temporal resolution
of the wire is approximately 10−5 s. To avoid aerodynamic
interference of the prongs on the hot wire, the probe is carefully
mounted, with prongs parallel to the jet exit. Hot-wire
calibrations are conducted using a standard static Pitot tube
located side by side with the probe in the jet’s potential core
where the velocity field is quite uniform with the turbulence
intensity of about 0.5% for both jets. The calibration data
are fitted using the third polynomial. To achieve the possible
maximum SNR, the voltage signals from the wire are offset
and amplified through the circuits. All hot-wire signals taken
are low-pass filtered with an identical cut-off frequency of
fo = 9.2 kHz, the maximum value set by the anemometer, to
eliminate excessively high-frequency noise and also to avoid
any aliasing. Then they are digitized at fs = 18.4 kHz via a
12 bit A/D converter on a personal computer. The sampling
duration is approximately 30 s for the circular jet and 22 s for
the plane jet.

4. Data processing method and assessment

4.1. Use of Taylor’s hypothesis

This study has to convert time derivatives into streamwise
derivatives using Taylor’s hypothesis, namely

〈(∂/∂x)2〉 = U−2〈(∂/∂t)2〉, (10)

where U is the local mean velocity. Based on the work of
Mi and Antonia [19], the resulting data are not corrected for
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the high turbulence intensity effect, although 〈u2〉/U � 20%
at x/d >10 in both jets (see figure 4). Using a passive scalar
(temperature) in a circular jet (x/d = 30) of Re = 1.9 × 104,
Mi and Antonia [19] checked the hypothesis (10) and several
of its corrections such as

〈(∂/∂x)2〉 = 〈(∂/∂t)2〉[U 2 + 〈u2〉 + 〈v2〉 + 〈w2〉]−1 (11)

proposed by other investigators (e.g. [20, 21]) for the effect of
high turbulence intensity. These authors found that equation
(11) is closely satisfied in the fully turbulent region across
the jet. They argued that the assumptions underpinning
equation (11), i.e. homogeneity and independence between
small scales and large scales, are approximately satisfied in
that flow region. Very important for this study, they revealed
that the departure from local isotropy, in terms of the mean
square scalar derivatives, is small along the jet centerline, thus
suggesting the applicability of ε = 15ν〈(∂u/∂x)2〉. Because
of this, equation (10) performs well on the jet axis, even
without taking any correction for high values of 〈u2〉/Uc and
〈v2〉/Uc.

4.2. Data processing algorithm

The centerline velocity measurements by hot-wire anemome-
try described in section 3 yield the original streamwise velocity
signals Ũm(t) = Um + um(t) and, consequently, the original
time derivative:

∂um

∂t
≈ �um

�t
= [

um

(
t + f −1

s

) − um(t)
]
fs. (12)

It follows that the measured dissipation, estimated from the
assumption of isotropic turbulence and Taylor’s hypothesis,
can be expressed plausibly by

εm ≈ 15νU 2
m〈(∂um/∂t)2〉 ≈ 15νU 2

mf 2
s 〈(�um)2〉. (13)

Equations (12) correspond to the first-order two-point
backward difference stencil used in numerical simulations.
Wang et al [11] have found that it obtains less accurate
estimation of the scalar dissipation rate than the use of
high-order spectral-like stencils. Note that the latter are
developed by Lele [22] for evaluating the scalar derivatives
in computational fluid dynamics. Thus, to calculate the
derivative more accurately, the present study also adopts the
latter algorithm to calculate the velocity gradient and thus
the dissipation rate. These stencils may be expressed as

βg(i − 2) + αg(i − 1) + g(i) + αg(i + 1) + βg(i + 2)

= c
um(i + 3) − um(i − 3)

6�t
+ b

um(i + 2) − um(i − 2)

4�t

+ a
um(i + 1) − um(i − 1)

2�t
, (14)

where the parameters α, β, a, b and c are determined
by substituting Taylor series expansion confidents and g
represents the implicitly determined local derivative of um.
The fourth-order seven-point scheme has been found by Wang
et al [11] to be the best for the estimation of the dissipation
whose parameters are α = 0.577 1439, β = 0.089 6406, a =
1.302 5166, b = 0.993 5500 and c = 0.037 502 45.

4.3. Hot-wire resolution analysis

The response frequency (≈ 105 Hz) of the hot wire producing
um(t) is much higher than the sampling frequency of um(t), i.e.
fs = 18 400 Hz. Namely the temporal difference of fs−1 used
for the calculation of εm is well within the temporal resolution
of the hot wire. When the operation of filtering um(t) is taken,
the spatial difference (�x) converted by Taylor’s hypothesis
from �t = fs−1 varies from 0.13 mm (x/d = 10) to 0.06 mm
(x/d = 40) for the plane jet and from 0.14 mm (x/d = 19) to
0.08 mm (x/d = 33) for the circular jet. By comparison, the
corresponding value of the Kolmogorov scale is estimated to
be η ≈ 0.12 (x/d = 10) to 0.21 mm (x/d = 40) for the plane jet
and η ≈ 0.13 (x/d = 19) to 0.20 mm (x/d = 33) for the circular
jet. Accordingly, the ‘spatial’ resolution converted from
�t = fs−1 for use of Taylor’s hypothesis is appropriate to
resolve the smallest scales at x/d � 10 for the plane jet and at
x/d � 19 for the circular jet, where the digital filter is used for
this study.

In contrast, the spatial resolution of the 1 mm hot wire
is not as good, considering that lw/η = 5–10 over these flow
regions. This length however has to be chosen for dw =
5 μm since the ratio lw/dw � 200 is generally needed for
a proper hot-wire probe with a nearly uniform temperature
distribution in its central portion and high sensitivity
[12, 18]. (Undoubtedly, the same issue has been involved
in most, if not all, of the previous studies experimentally
using hot-wire anemometry, despite its negligible effect on the
mean velocity and RMS measurements.) On the other hand,
unlike the measured fluctuating velocity um and especially its
derivatives, see equations (5) and (6), the effect of electronic
noise (∂n/∂t) on the temporal derivatives ∂uim/∂t (i = 1, 2,
3) or the streamwise ones ∂uim/∂x, from Taylor’s hypothesis,
is virtually uncorrelated with the hot-wire length and even the
measurement location in the flow field; see equation (6). That
is, if no filter acts, the noise effect should always exist at a
similar level, no matter how small or big the ratio lw/dw is. It
is hence expected that the hot-wire length should not be critical
for the present study.

5. Results and discussion

5.1. Mean and RMS velocities

To check the influence of noise on the mean and RMS
velocities, the centerline results of Um/Uj and 〈u2

m〉1/2/Um for
the two jets are presented in figures 4(a) and (b), respectively.
Figure 4(a) clearly suggests that Um/Uj for both jets at
x/d � 8 follows closely the relations for self-preservation of
the mean velocity, i.e.

(Uc/Uj )
α = KU [(x − xo)/d]−1 (15)

with α = 1 and 2 for the circular jet and plane jet, where
Uc denotes the centerline true mean velocity. The centerline
distribution of

〈
u2

m

〉1/2
/Um is not as good but tends to

approximately satisfy that

〈u2〉1/2/Uc = Ku (16)

at x/d � 18 for the two flows. Both KU and Ku from
(15) and (16) are constants determined by experiment. Note
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that equation (16) is required for the self-preservation of the
fluctuating field in both jets. It is hence suggested that Um ≈
Uc and

〈
u2

m

〉 ≈ 〈u2〉. That is, the measured noise does not really
affect both the mean and RMS velocities. This is expected
because Um = 〈Uc + um〉 = Uc and

〈
u2

m

〉 = 〈u2〉 + 〈n2〉 ≈ 〈u2〉
since 〈u2〉 � 〈n2〉; note that u and n are uncorrelated,
i.e. 〈un〉 = 0. As such, the velocity half-width, L, a lateral
distance at which U = 0.5Uc, should be virtually free from
the noise contamination. Indeed, it is well confirmed that the
measured results of L in the far field of each jet are consistent
with the self-preserving relation

L/d = KL(x − xo)/d (17)

with the constant KL being determined by experiment.

5.2. Low-pass-filter cut-off frequency (fc) versus Kolmogorov
frequency (fK )

Figure 5 shows the fc-dependence of the skewness and flatness
factors of ∂u/∂x, i.e. S ≡ 〈(∂u/∂x)3〉/〈(∂u/∂x)2〉3/2 and
F ≡ 〈(∂u/∂x)4〉/〈(∂u/∂x)2〉2, for both circular and plane jets.
Since the PDF of ∂u/∂x is far from Gaussian (not presented),
S and F should differ significantly from the Gaussian values
(0, 3). Figure 5 clearly demonstrates that both S and F first

increase with fc before reaching their maxima (0.4–0.44; 6.1–
6.5) around fc = fK and then decrease with larger values of
fc. When fc � fK or as fc → 0, the low-frequency component
of ∂u/∂x should approach that of u which is near Gaussian
on the centerline (not shown). As fc increases at fc > fK , the
measured ∂um/∂x will be increasingly contaminated by noise.
Consequently, the magnitudes of S and F will drop since the
random noise is often Gaussian. Similar fc-dependences of
S and F are observed by Kuo and Corrsin [13]. It is thus
suggested that fc = fK is the right choice for the low-pass-filter
cut-off frequency.

However, Antonia et al [15] observe that the maxima of
S and F are reached approximately at fc = 1.75fK∗. This
discrepancy may be due to different methods to set the cut-
off frequency. Antonia et al [15] obtain their ‘Kolmogorov
frequency’ fK∗ as follows. First, fc is determined from �∂u/∂t ,
the spectrum of the unfiltered ∂u/∂t , at which �∂u/∂t exceeds
its own minimum at f min by 2 dB, a value somewhat arbitrarily
taken. Then, fK∗ is obtained from (3) where the dissipation
εm is estimated from (13) using um filtered at fc < f min. By
contrast, the present fc is determined from (7)–(9) and (13),
without any arbitrariness, in the process of digitally filtering
um (see figure 1). It might be proper to consider that the
value of 1.75fK∗ obtained by Antonia et al [15] is the real
Kolmogorov frequency, i.e. fK = 1.75fK∗.

5.3. Spectra of turbulence kinetic energy and dissipation

The one-dimensional spectra for 〈u2〉 and ε are defined as

〈u2〉 =
∫ ∞

0
�u(f ) df (18)

and

ε =
∫ ∞

0
�∂u/∂x(f ) df . (19)

To estimate the one-dimensional dissipation spectrum, it is
necessary to use the assumption of local isotropy (e.g. [23]),
i.e. ε = 15ν〈(∂u/∂x)2〉. Figures 6(a) and (b) show �u

and �∂u/∂x calculated from the centerline um(t) and those
filtered at the fourth iteration; the original data, plotted also in
figure 2, were obtained on the centerline at x/d = 30 in the
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Figure 6. Spectra of the original and filtered signals of (a) kinetic energy and (b) dissipation rate at x/d = 30.

circular jet, where the convergent fK = 3562 Hz. It is seen
that the contributions of the ‘noise’ to 〈u2

m〉 and to εm are very
different. The ratios (〈u2

m〉 − 〈u2〉)/〈u2〉 and (εm − ε)/ε, for
example, are estimated to be approximately 0.3% and 56% for
fc = 2.5fK in the circular jet, while these ratios are 0.6% and
468% for fc = 4.1fK at x/d = 40 on the plane jet centerline
(the spectra are not presented). That is, the high-frequency
noise contamination, if not properly filtered out, has a great
impact on εm, while its influence on 〈u2

m〉, or 〈u2
im〉, in a more

general sense, is much less. When considering the case of
over-filtering um(t) for the circular jet, the two ratios of about
−0.01% and −11% are obtained for fc = 0.5fK , suggesting
the influence of over-filtering to be very small on 〈u2

m〉 but
significant on εm. Accordingly, these results together imply
that, while large-scale (low-frequency) turbulent motions
control the magnitude of 〈u2

i 〉, the small-scale (high-frequency)
fluctuations of velocity contribute predominantly to ε.

5.4. Dissipation rate and characteristic scales of turbulence

For turbulent flows of a sufficiently high Reynolds number,
it is usually considered that ε is equal to the supply rate of
the turbulence kinetic energy from the large-scale structures,
which is of order U 3

0

/
L0 (here U0 and L0 are the local

characteristic velocity and length scales), (see, e.g., [24–26]).
Based on this argument, we obtain that

ε = KεU
3
c

/
L (20)

when taking U0 = Uc and L0 = L for both jets, where Kε

is a constant determined by equation (20). It follows from
(15)–(17) and (20) that self-preservation of the turbulent jet
requires

ε
(
U−3

j d
) = Cε[(x − x0)/d]−(3+α)/α

with Cε = KεK
3/α

U K−1
L (21)

η/d = CηRe−3/4[(x − x0)/d](3+α)/4α with Cη = C−1/4
ε

(22)

fKd/Uj = Cf Re3/4[(x − x0)/d]−(7+α)/4α

with Cf = (2π)−1K
1/α

U C1/4
ε (23)

λ/d = CλRe−1/2[(x − x0)/d](α+1)/2α

with Cλ =
√

15KuK
1/α

U C−1/2
ε (24)

Reλ = CR Re1/2[(x − x0)/d](α−1)/2α

with CR =
√

15K2
uK

2/α

U C−1/2
ε , (25)

where α = 1 and 2, respectively, for the circular and plane
jets. In (24), λ denotes the Taylor microscale defined by
λ ≡ 〈u2〉1/2〈(∂u/∂x)2〉−1/2, whereas in (25), Reλ is the
turbulence Reynolds number obtained by Reλ = 〈u2〉1/2λ/ν.
Here it should be pointed out that the constants Cε, Cη,
Cf , Cλ and CR may be determined by fitting measured
data to (21)–(25) or by the constants KU , Ku, KL and Kε

obtained from the measurements of the mean velocity and
the centerline RMS velocity through equations (15)–(17) and
(20). Note also that, if not considering the effects of using
Taylor’s hypothesis and isotropic turbulence assumption, the
measurement uncertainties in KU , Ku, KL and Kε are estimated
to be approximately 0.6%, 2.0%, 1.0% and 3.5% which are
converted to 6.0%, 2.6%, 2.8%, 4.2% and 6.5% for those of Cε,
Cη, Cf , Cλ and CR . Nevertheless, these measurement errors
should not be vital for the verification of the digital iterative
filter.

Previous work such as Antonia et al [4] has proven most
of (21)–(25) by experiments. For this reason, we make use
of these relations to check the filtering scheme of Mi et al [8]
below.

As justified early in section 5.2, the right choice of the cut-
off frequency is fc = fK . Practices reveal that, when taking δ =
10−4 (see figure 1), the scheme of Mi et al [8] only requires four
iterations for all the present turbulence statistics to converge
to their ‘true’ values. Important to note, the original cut-
off frequency fo = 9.2 kHz is not high enough for the near-
field measurements in both jets. In fact, fKm (thus fK ) is
greater than fo over the region x/d < 10 for the plane jet and
x/d < 19 for the circular jet. That is, fc < fK or the over-
filtering of um has occurred, so that the mean dissipation rate
is underestimated, in the near fields of the jets. Accordingly,
the operation of filtering um is taken only at x/d � 10 for the
plane jet and at x/d � 19 for the circular jet. Figure 7 presents
the convergent result of Kolmogorov frequency (fK ) by open

7
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Figure 7. Measured Kolmogorov frequency along the jet centerline.

symbols. Obviously, equation (23), as indicated by lines, is
valid over the region where the filtering operation is taken by
the code, i.e. at x/d � 19 and 10 for the circular and the plane
jet, respectively. Upstream from the region, the true fK must
be greater than fKm since the latter is obtained from the over-
filtered um or equation (9) at C < 1. Indeed, all the values of
fKm fall below the best-fit curve of fK from equation (23) for
both jets.

Figures 8 and 9 demonstrate that the data of ε, η and
λ agree very well with (21), (22) and (24) at x/d � 10 and
19 for the plane and circular jets. This, in return, provides
strong support for the validity of the iterative scheme. As x
increases, fK decreases and thus the ratio fo/fK increases, so
that the relative contribution of electronic noise grows rapidly.
Consequently, εm, ηm and λm show increased departures
from their true values with increased x. That is, εm lies
well above (21), while ηm and λm fall below (22) and (24),
respectively.

Figures 8 and 9 also illustrate the effect of over-filtering
um(t) on εm, ηm and λm at x/d < 10 and 19, respectively, for
the plane and circular jets. In this case, the measured values
of εm, ηm and λm never agree with relations (21), (22) and
(24), not only because of the over-filtering but also because
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Figure 8. Centerline variations of (a) energy dissipation rate and (b) Kolmogorov scale.
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Figure 9. Centerline variation of the Taylor scale.

self-preservation may not be satisfied in the flow region.
Importantly, in the near and transition flow regions, very high
low-pass filtering cut-off frequencies must be chosen since fK
is extremely high. In particular, for x/d < 8, the present choice
of fo = 9.2 kHz is relatively too low so that, as seen clearly,
εm is significantly underestimated. Accordingly, the action of
electronic filter on velocity and its gradients is not suggested,
although high rapidity fluctuations of velocity can be detected
by hot wires only if their response frequency is higher
than fK .

Next we consider the local turbulence Reynolds number
defined based on λ by Reλ = 〈u2〉1/2λ/ν. Figure 10 shows
the centerline variation of Reλ. According to equation (25), in
the self-preserving region, Reλ = CR Re1/2[(x −x0)/d]1/4 for
the plane jet (α = 2), while Reλ = CR Re1/2 for the circular
jet (α = 1). That is, the local turbulence Reynolds number
of the two jets should behave quite differently in the far-field
region: Reλ is a constant in the circular jet but increases slowly
with x in the form of Reλ ∝ x1/4. This is indeed verified in
figure 10 by the results of Reλ estimated from λ for x/d >

10. On the other hand, without use of the digital filter, not all
the data follow (21)–(25) in the self-preserving region of both
jets.
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Figure 10. Centerline variation of the Taylor Reynolds number.

6. Concluding remarks

Based on definitions (2) and (3) for the Kolmogorov scales
η and fK , Mi et al [8] have developed a fast-convergent-
iteration filtering scheme that not only removes the unwanted
noise contribution from the measured signal of velocity (uim)
but also finds the ‘true’ values of λ, η and fK without any
arbitrariness. The scheme uses (7)–(9) circularly to ‘squeeze
out’ the noise-error from uim by filtering uim at new fKm

iteratively. The principle is based on the fact that the noise
has a significantly greater influence on εm than on both ηm

and fKm. The scheme has been well validated presently by
analyzing the measured data of um against the self-preserving
relations (21)–(25) whose validity has long been proven firmly
by many independent experiments in the literature.

Accordingly, several conclusions on the digital filter
scheme can be drawn below.

(1) The scheme is of important significance to enhance the
basic research on fine-scale turbulence, because most
studies to date have used hot-wire anemometry (e.g.
[1, 7]). It is believed that many of the previously
derived conclusions on fine-scale turbulence may suffer,
to an unknown extent, from the contamination of high-
frequency electronic noise.

(2) Application of this scheme will allow future hot-
wire measurements to unambiguously determine the
appropriate cut-off frequency, hence generating more
reliable data for better understanding of fundamental
small-scale turbulence.

(3) The scheme is much simpler and more rigorous than
the electronic filter schemes adopted previously by, e.g.,
Antonia et al [4, 15], Champagne [5] and Bailey et al
[7], for hot-wire measurements of small-scale turbulence
properties.

(4) The use of the digital filter does not require any electronic
filter and other relevant devices. Significantly, it has
largely simplified the process of hot-wire measurements.

(5) The scheme should also be applied for achieving the
reliable measurement of temperature (scalar) using a cold-
wire anemometer, in which the Batchelor, instead of the

Kolmogorov, scales may be found. Reliable data on a
turbulent scalar will certainly help to better understand
the fundamental turbulence.

(6) The noise effect is basically uncorrelated with the hot-wire
length. So, the above conclusions still apply even when
the wire length is too long to well resolve the smallest
scales of turbulence.
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