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Abstract— Autonomous underwater vehicles (AUVs) are com-
monly used to conduct complex underwater tasks, such as ma-
rine infrastructure overhaul and maintenance, environmental
monitoring, oceanographic mapping, and organism capture.
These tasks require the ability of an AUV to perform au-
tonomous navigation, especially when communication is limited
in the underwater environment. This paper developed a new
type of lightweight intervention AUV for autonomous naviga-
tion using data from multiple inertial sensors, where multi-
sensor error state Kalman filter schemes are preferable to stan-
dard Kalman Filters in terms of the AUV’s motion estimates.
Concerning target recognition, a color restoration method is
provided for degraded underwater images and a You Only Look
Once strategy is combined with topological analysis for object
detection. In addition, the proposed design is robust in terms
of its software components and mechanical structure, which
provides a feasible platform for AUV’s secondary development.
Experiments of surveying and object manipulation conducted
in underwater environments demonstrate the functionality of
the entire system and its potential applications in the fields of
science and industry.

I. INTRODUCTION

In recent decades, underwater intervention tasks, such
as organism catching [1], [2], underwater infrastructures
construction and maintenance [3], [4], underwater search
and rescue missions [5], [6], have been chiefly conducted
under extensive human supervision with the help of remotely
operated vehicles (ROVs). To be specific, launched from a
dedicated mother vessel with umbilical cables for energy
supply and communication, an ROV requires an experienced
operator with highly focused attention, which results in
increased operational costs and human security protocols.

With technological developments in underwater persistent
battery systems and powerful processors, autonomous under-
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water vehicles (AUVs) have become a promising alternative
to ROVs for underwater intervention tasks, especially those
not requiring direct human supervision. The AUVs can also
be equipped with manipulators, called intervention AUV (I-
AUV). Furthermore, AUVs have higher maneuverability due
to self-carried batteries and no cable. Therefore, they can
automatically sense the environment and perform mechanical
work in hazardous areas, such as deep oceans, sub-glacial
waters, and natural or artificial catastrophic underwater re-
gions. Given the research of AUVs, the history can be
traced back to the 1990s [7], [8], [9], [10]. However, as
far as we know, there exist limited successful examples
of the implementation of AUVs. The first relevant live
demonstration of an AUV was found in the SWIMMER EU
project [11]. In this case, AUV was proposed as an ROV
carrier. The AUV is responsible for automatically navigating
to the offshore infrastructure so as to dock to establish a
connection with the operator on the base station, which
allows standard ROV operations without tightening the rope
on the ground. The following steps, i.e., those toward en-
vironmental perception, location, analysis, decision making,
as well as autonomous and independent missions execution
in complicated environments were presented in [12]. The
GIRONA 500 I-AUVs described in [13] symbolize milestone
progress for I-AUVs, which can perform underwater tasks
involving fully autonomous manipulations.

The accuracy of I-AUV manipulation depends on the
manipulator itself and its controller and the precision of
the vehicle’s sensory equipment. Vision is one of the most
widely used abilities regarding temporal or spatial resolution,
especially in underwater environments. Its performance is
better than sonar or laser range finders. In general, the un-
derwater environment can be characterized by non-uniform
lighting and shadows, suspended particles, or marine life,
and light attenuation and scattering, requiring AUVs to be
able to conduct robust underwater image processing [14]. In
a light-attenuation condition, a color registration algorithm
was proposed to recover degraded color information [15]. In
the past few decades [16], [17], traditional machine learn-
ing methods aimed at underwater image-feature extraction
have become popular. Moreover, deep-learning algorithms
may improve AUV’s ability for marine organism perception
detection and recognition. For instance, using a faster region-
based convolution-neural-network model, different marine
organism data-augmentation strategies were evaluated in
[18], [19]. This algorithm is stronger robust to varying
environments like motion blur, illumination changes, and

This article has been accepted for publication in IEEE Transactions on Circuits and Systems--II: Express Briefs. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSII.2022.3193300

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: DALIAN MARITIME UNIVERSITY. Downloaded on October 03,2022 at 06:16:51 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Mechanical structure of the AUV. (a) Integrated AUV during pool
trial. (b) Basic three-dimensional model of AUV.

perspective distortion than traditional algorithms. It is worth
noting that from the viewpoint of practical applications,
processing speed is an important performance indicator for
object detection and recognition. As an end-to-end algorithm,
You Only Look Once (YOLO) has advantages in processing
speed, which can reach up to 45 frames per second (fps)
[20]. Therefore, in our studies, the YOLO model is used to
perform vision-based target location.

This paper designs AUVs mechatronic systems including
mechanical design, software and hardware integration, end-
effector control, and real-time image detection. The main
contributions of this paper are listed as follows: (i) Different
from the relatively larger size of the proposed AUVs in
[11], [13], a new type of lightweight AUV is designed
for underwater exploration and exploitation missions. Their
weight (12 kg) and dimensions (388*312*121 mm) allow
the vehicles to be deployed from small ships, thereby con-
siderably reducing operational costs. (ii) The YOLO strategy
is combined with topological analysis for target detection,
where a color-restoration method for degraded underwater
images is employed. In addition, although deep-learning al-
gorithms are wildly investigated concerning marine organism
detection in [18], it is rarely reported that this solution is de-
ployed on AUVs systems for the improvement of perception
detection. (iii) With the help of data from multiple inertial
sensors, a multi-sensor error-state Kalman filter (MESKF)
is proposed for estimating the vehicle’s motion. Compared
to standard Kalman Filters in [21], the MESKF scheme can
significantly reduce navigation errors accumulated over time.
Testing results demonstrate successful detection for different
positions and target orientations running online with video
sequences (12-15 fps).

The remainder of this paper is organized as follows. In
Section II, a general description of the platform is presented.
Section III presents the different components constituting
AUV’s software. Details of the experimental results are
demonstrated in Section IV. Section IV gives the conclusion
of this paper.

II. PLATFORM DESCRIPTION

A. Mechanical design

As shown in Fig. 1 (a), the integrated AUV is undergoing
pool trials. The AUV’s mechanical structure mainly includes
an ower bottom plate, thrusters, upper-hatch-cover pressure
plate, upper hatch cover, a sealed control electronics cabin,
and slab connection frame, among other components, as

Fig. 2. AUV hardware. (a) Layout of AUV hardware. (b) Schematic of
AUV hardware

shown in Fig. 1 (b). The external dimension is designed to
be 388*312*121 mm. The sealed control electronics cabin’s
main body (80 mm in height) is made of aluminum alloy,
and the surface is processed by computer numerical control
(CNC) machining and anodized to prevent corrosion by salt-
ion solution. Because of the space limitation, symmetrical
circular holes with a diameter of 60 mm are drilled on one
pair of sides of the sealed cabin. Rectangular holes with
a side length of 166*88 mm are opened on the other pair
of sides to seal the cabin and expand the field of view of
the camera, as well as facilitate opening and maintenance,
and debugging. The top surface is wholly hollowed with O-
ring grooves on the edge. The O-ring’s static compression
design is within 15% − 30%. A transparent acrylic board
is applied as a waterproof sealing plate and attached to
the upper top surface. In order to evenly stress the sealing
plate, it is fastened to an anodized aluminum alloy layer
on the upper-hatch-cover pressure plate with screws. The
edge of the upper hatch cover is vertically fixed with a
nylon board-layer connection frame, and a LED light-source
support frame printed with Asa water is set on the board-
layer connection frame. The LED light source adjusts the
light-source irradiation area by changing the position of the
support frame in the slot.

In order to improve its scalability and facilitation of
carrying the equipment outside the AUV, the sealed bilge
is constructed with 31 fixed threading bolt holes, as shown
Fig. 1(b). The positions of anodized aluminum alloy made
threading bolts actively avoid the inlet and outlet channels
of the thruster. The focus is on the center and edges of the
cabin bottom. To guarantee the maneuverability of the AUV,
we adopt the structural design of four horizontal propellers
and four vertical propellers, where there exits no interference
between the inflow and the outflow of vertical and horizon-
tal propellers, thus guaranteeing the motion independence
between X, Y, and Z axes. Compared with a vertical double-
thruster structure, the vertical four-thruster design considers
the stability of depth control. Specifically, we fixed the
vertical thruster on the board layer connection frame and the
horizontal thruster on the lower base plate. We also equipped
the floor layer with a pair of grippers to allow the AUV
to maintain its flexibility and stability. Each gripper joint,
corresponding to a degree of freedom, has its angle feedback.
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B. Hardware platform

The hardware contains the following components, as
shown in Fig. 2. A mini motherboard (100*87 mm) based
on 64 tensor cores and an eight-core ARM CPU running
at 2.26 GHz execute all the operational tasks related to
remote communications, sensor data reading, and image
processing. A USB 3.0 interface connects the cameras and
an Arduino board to the motherboard. The Arduino board
was specifically developed and can manage multiple water-
leak detectors and a B30 pressure sensor. STM 32 controls
thrusters via an electronic speed controller (ESC). A 250-
W DC/DC converter is used to power the motherboard,
microcontroller boards, hard drives, and switches. All of
the elements mentioned above are enclosed in the sealed
control electronics cabin. Other structural parameters include
the following:

• Load weight in water: 0-10 kg.
• Weight in air: 12 kg.
• Operating temperature: -5 to 35 deg C.
• Power consumption: 60-100 W.

If there is no external power source, the AUV can be powered
by an internal battery system to maintain proper autonomous
operation. Given that the average power consumption of
the AUV is approximately 60 W, a battery with a nominal
voltage of 24 V and a nominal current of 10 Ah will
provide more than four h of autonomous operation. Any
standard device, such as HD, SD card, SSD, or USB drive,
can be used in terms of the system’s storage capacity. A
selection criterion would be based only on storage capacity
requirements and specific consumption.

III. NAVIGATION LAYER

The AUV’s software architecture comprises independent
components. Each component is responsible for a specific
task, grouped into three different layers according to its role.
In particular, the three layers include end-effector, navigation,
and perception layers, as shown Supplementary Fig. 3. The
leading layer is the navigation layer, which contains the
drivers for all the navigation sensors and localization filters
for estimating the AUV’s pose and velocity. To interact with
the sensor hardware, the driver reads the ICM20602 inertial
measurement unit (IMU), including a k8975 magnetome-
ter, a three-axis accelerometer, and a three-axis gyroscope.
Integrated with the data captured by the above sensors, a
quaternion-based MESKF typically consists of two steps,
prediction and update are used. In the prediction step, the
AUV estimates its immediate motion from both a set of
sensor data and dynamic models. In the update step, the AUV
is permitted to correct the prediction via real observations.
Moreover, two stack vectors, i.e., the nominal states vector
and errors vector, are introduced in the process. The state
vector x(k) containing the navigation data at the k iteration
is given by

x(k) = (p,q,M,v,ω,a,d,b,c), (1)

Fig. 3. Experiment using multiple inertial sensors. (a) Experimental
pool. (b) Comparison of tracking true trajectory with MESKF and KF. (c)
Comparison of distance errors with MESKF and KF. (d) Comparison of
error component with MESKF and KF.

where p = [x,y,z] represents the AUV’s position, q =
[qx,qy,qz,qw] denotes its attitude as a quaternion, M =
[Mx,My,Mz] represents the magnetic component; v =
[vx,vy,vz], ω =ωx,ωy,ωz, and a= [ax,ay,az] denote its linear
velocity, angular rate, and acceleration, respectively, while
d = [dx,dy,dz], b = [bx,by,bz], and c = [cx,cy,cz] represent
the corresponding measurement biases of ω , a, and M,
respectively.

From (1), Xh = Mxcos(θ) + Mysin(θ)sin(ϕ) +
Mzsin(θ)cos(ϕ), Yh = Mycos(ϕ) − Mzsin(ϕ) and
ξ = arctan(Yh/Xh) are defined, in which θ and ϕ are
the pitch and roll angles, respectively. In addition, the
readings of the inertial sensors contain a particular bias
and noise that obeys Gaussian statistics with zero means.
Thus, the real values of angular rate and acceleration can be
achieved via sensor measurements, ω = ωm − d −ηω , and
a = am −b−ηa, M = Mm −c−ηM , where ωm is the reading
of the gyroscope, am denotes that of the accelerometer, Mm
that of the magnetometer, and ηω , ηa, and ηM represent
the Gaussian noise in the readings of the respective inertial
sensors.

Moreover, the accelerometer reading in the body frame
with respect to gravity acceleration is typically given as
am(k)= g−at(k), where g= [0,0,9.8 m/s2] is the the gravity
acceleration and at(k) denotes the real body acceleration at
the kth iteration. The error vector including errors resulting
from sensor biases and random noise is written as δ (k) =
(δp,δq,δM,δv,δω ,δa), where δp are errors in position, δq
denote errors in attitude, δM are errors in the magnetic
component, and δv, δω , and δa are errors in linear velocity,
angular rate, and acceleration, respectively.

The prediction stage of MESKF relies on a simple
constant-velocity kinematics model to predict how the state
evolves from time k to time k + 1. The discrete equation
x(k+1) = f (x(k),η) that governs the nominal state is based
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on general motion under constant acceleration

p(k+1) = p(k)+Rv(k)∆t +
1
2

Ra(k)∆2
t ,

ω(k+1) = ωm(k)−d(k),

v(k+1) = v(k)+a(k)∆t ,

a(k+1) = R′(k)g−am(k)+b(k),

q(k+1) = qm ∗q(k),b(k+1) = b(k),

d(k+1) = d(k),c(k+1) = c(k),

ΦM(k+1) =


180◦−ξ (k),Xh(k)< 0,Yh(k)< 0
ξ (k),Xh(k)> 0,Yh(k)< 0
360◦−ξ (k),Xh(k)> 0,Yh(k)> 0
180◦+ξ (k),Xh(k)< 0,Yh(k)> 0,

where ω(k+ 1), v(k+ 1), a(k+ 1), p(k+ 1), q(k+ 1), and
ΦM(k+ 1) denote the predicted values of the angular rate,
linear velocity, acceleration, position, attitude, and magnetic
azimuth, respectively. b(k+1), d(k+1), and c(k+1) are the
predicted measurement biases of ω , a, and M, respectively,
while R denotes the body rotation matrix corresponding
to the quaternion q(k) and R′ is its inverse. ∆t represents
the time interval between the kth and k + 1st iterations,
and qm = ωm∆t is the quaternion determined by the AUV’s
angular motion during ∆t . Here, the reference frame of
v(k+1),a(k+1) is the local body frame, so the term R′(k)g
implies that the gravity g in the inertial frame is transformed
into the body frame. However, the position in the inertial
frame must be provided to perform the navigation tasks. Then
the terms Rv(k) and Ra(k) are used to attain the velocity and
acceleration in the inertial frame. In addition, the bias terms
b(k), d(k), and c(k) are assumed to be constant. The nominal
state typically computes the error state and its corresponding
covariance. Letting the error state be defined as the difference
between the estimated variable and its absolute quantity,
the errors in angular velocity, acceleration, and magnetic
component are regarded as constant. From [22], the discrete
equation that govern the remaining errors state is given by

δp(k+1) =δp(k)+Rδv(k)∆t −R(v(k)×δq(k))∆t+,

1
2
(a(k)×δq(k))∆2

t +
1
2

Rδb∆
2
t ,

δv(k+1) =δv(k)+(R′g)×δq(k)∆t +δb∆t ,

δq(k+1) =Dδq(k)+(−I3∗3∆t +
1− cos(|ω(k)|∆t)

|ω|2(k)
S,

− |ω(k)|∆t − sin(|ω(k)|∆t)

|ω|3(k)
S2)d∆t ,

(2)

where D represents the rotation matrix corresponding to ωm,
I3∗3 denotes the 3∗3 identity matrix, × is the cross-product,
and the skew symmetric matrix S of the velocity is given as 0 −vz vy

vz 0 −vx
−vy −vx 0

 .

Using (2), when the nominal state is corrected, the estimated
error value is always zero. However, the covariance matrix
P(k) of the error at the kth iteration is not zero. According to

the Kalman equation, the error state covariance matrix can
be propagated as

P(k+1) = F(k)P(k+1)FT (k)+Qk, (3)

where F(k) is the Jacobian of (2) and Qk denotes the noise
covariance.

Before proceeding, and let δm = xm − x̂m denote the mea-
surement error between the sensor readings xm and their
prediction x̂m, the measurement residual in the kth iteration
is then given as

ym(k) = δm(k)−H(k)δ̂ (k), (4)

where H(k) denotes the linearized observation model and
δ̂ (k) represents the estimated errors. Note that the prediction
errors are updated using the measurement error, and the
classical Kalman updated equation [21]. Then, using the
error-state vector updated in the previous stage, the nominal
state vector is corrected as

x(k) = x(k)+ δ̂ (k). (5)

The error state vector is reset to zero when the correction is
completed. The algorithm starts again in the next iteration
and predicts the new nominal state value based on the
corrected vector x(k) and the new inertia input. Subsequently,
to verify the proposed MESKF implementation, experiments
were conducted in a water tank with dimensions 3000 ∗
2000∗1000 mm (shown in Fig. 4(a)) to track the setting truth
trajectory. Notably, the AUV hovers over the bottom using
data from the multiple sensors and maintains its altitude
throughout the experimental process. Thus, the experiments
are carried out in the x− y plane. In Fig. 4(b), the setting
truth trajectory is plotted in red, while the trajectory of the
standard KF is plotted in yellow and that of the MESKF in
blue. Fig. 4(c) involves the comparison of tracking accurate
trajectory with the MESKF and KF, where the error between
the MESKF and KF is 112 mm. Moreover, Fig. 4(d) shows
a comparison of the error components with the MESKF and
KF (also see supplementary materials). The experimental
results demonstrate that the proposed MESKF outperforms
the standard KF in the estimated trajectories.

IV. EXPERIMENTAL RESULTS

A wide range of experiments was carried out in an indoor
pool with the system described in Section III. First, the
AUV’s underwater target-detection capabilities using the pro-
posed vision system were tested. As shown in Supplementary
Movie 1, after visual detection of the target, the AUV kept
a fixed distance relative to the red square while waiting for
the intervention to begin. Once the AUV detected the moving
square, the intervention was executed in a free-floating mode
that controlled the vehicle to track the moving square and
set its distance from the court. Despite overshooting in
the control process, the AUV accomplished several vision-
guided tracking trials.

The robustness of the AUV’s anti-disturbance control was
subsequently tested. In the anti-disturbance testing, a random
disturbance was used to change the position and attitude
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Fig. 4. Robotic fish recovery task grasping sequence. From (a) to (c):
searching the target in free-floating mode and initiating the grasp. From (d)
to (f): Grasp completed and recovery.

of both the AUV and the end effector during this final
demonstration (see Supplementary Movie 2). The AUV could
successfully maintain the desired position and attitude with
data from inertial sensors and the proposed algorithm.

Furthermore, a robotic fish recovery task was automati-
cally completed without any outer guideline, where a training
set of robot fish is provided to the YOLO network, resulting
in the AUV with the ability of robot fish detection (see
Supplementary perception layer section. The AUV conducted
a floating-mode search for the target object on the water
surface using the bottom camera. Once the AUV detected the
robotic fish, the AUV moved directly above the target object.
When reaching the target position, the end effector initiated
the pre-grasp sequence until the contact with the object was
deleted. In the grasp phase, before applying the pressure
required to lift the object, the contact points were analyzed
to assess the stability of the grasp. In addition, we also used
the information of the encoder to estimate the grab weight of
the AUV. After confirming that the grab was successful, the
AUV started the recovery phase, took the object, and placed
it in the yellow square (see Supplementary Movie 3). The
sequence of images in Fig. 4 shows the grasping operation
from searching for the target to grasp recovery.

V. CONCLUSIONS

A new class of lightweight intervention AUVs highlighting
successful hardware and software integration is described
in this paper. The designed intervention AUV is incredibly
flexible, equipped with several sensing equipment, external
power supply, and Ethernet connections, thus avoiding hard-
ware and software structure changes. Data from multiple
inertial sensors rather than a single sensor enable the AUV to
navigate in performing underwater tasks autonomously. Error
states are used to design the navigation algorithm. Cameras
can be placed in different positions depending on the specific
missions to be carried out. The YOLO strategy combined
with topological analysis can be applied for object detection
and recognition. Experimental results from tests conducted
in water tanks demonstrated the system’s usefulness in tasks

like object identification, surveying, anti-disturbance control,
and manipulation.
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