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A B S T R A C T   

Ships have brought substantial economic benefits, and meanwhile, they release exhaust gases, including plenty of 
nitrogen oxides (NOx). Increasingly stringent air pollutant emission standards (e.g., MARPOL) for ships have 
been established at home and abroad to reduce the pollution of NOx. In this paper, a promising technology for 
removing NOx from ship exhaust by hydrodynamic cavitation (HC) and chlorine dioxide (ClO2) was proposed. 
The mechanism of HC promoting denitration was discussed. The various influencing factors of the HC enhancing 
ClO2 circulation denitration, such as the pressure difference (ΔP) between the inlet and outlet of the HC reactor, 
solution temperature (10.0 – 55.0 ℃), NO initial concentration (500–1000 ppm), gas flow rate (1.0–1.6 L/min), 
solution pH (3.00 – 11.00), and ClO2 concentration (0.001–0.100 mmol/L) on denitration effect were studied in 
the experiments, in which the optimal conditions were established. On the basis of the results of HC enhancing 
ClO2 circulation denitration, HC enhancing ClO2 non-circulation denitration experiments were carried out. The 
results showed that the NO and NOx removal efficiencies reached 93% and 90%. We also measured the final 
anions in solutions after denitration by ion chromatography and discussed the reaction pathways.   

1. Introduction 

The continuous growth of world seaborne trade makes rapid growth 
in the global fleet. As of 30th October 2019, there were 96,295 ships 
with more than 100 gross tons worldwide. Ships bring substantial eco-
nomic benefits [1]. Nevertheless, they also cause severe air pollution 
problems [2]. The exhaust gas from ships contains pollution sources 
such as particulate matter (PM), sulfur oxides (SOx), and NOx, which 
have adverse effects on the atmospheric environment and human health 
[3–7]. In response to ship pollution, increasingly stringent air pollutant 
emission standards (e.g., MARPOL) for ships have been established at 
home and abroad [8]. Scholars have studied many emission reduction 
technologies for the above reasons, finding that removing SOx and PM 
from ship exhaust is easy, but it is challenging to remove NOx. Deni-
tration is the key to the integrated treatment of ship exhaust. 

Currently, there are many methods to reduce NOx emission from 
ships, such as selective catalytic reduction (SCR) [9–11], exhaust gas 
recirculation (EGR) [12–14], and wet denitration [15,16]. The 

denitration rate of the SCR system reached 80%− 95% [17]. However, 
due to the burning of low-quality fuels, the particles in ship exhaust are 
more likely to pollute the catalyst, causing catalyst poisoning, which is 
not conducive to the SCR system’s operation. Moreover, the SCR system 
using urea or ammonia has an excellent practical effect on land, but 
considering the reality of the ship, putting a large amount of urea or 
ammonia in the living area harms the crew’s life, which is another 
complex problem in the application of this technology on board. The 
EGR system can satisfy the Tier III standard for NOx emissions from 
ships, but it will lead to cylinder liner wear and increase exhaust prod-
ucts (e.g., PM and CO) [18]. The EGR system also has significant changes 
to the original engine structure, making it challenging to apply on 
existing ships in service. 

The SCR and EGR only remove NOx in exhaust emissions; however, 
wet denitration technology can simultaneously remove various pollut-
ants in the exhaust gas [18], which attracts the attention of researchers. 
SOx and PM can be effectively removed by wet denitration, while NO, 
which accounts for over 90% of NOx in ship exhaust, is hard to dissolve 
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in water [19], which brings challenges to wet denitration [20–22]. For 
meeting the challenges, multi-step wet denitration technology is inves-
tigated. Anette et al. [23] first used gaseous ClO2 to oxidize NO to NO2, 
then absorbed NO2 with Na2SO3 and Na2CO3 solution, and the removal 
efficiency of NOx reached more than 90%. Although the denitration 
efficiency of the multi-step wet denitration technology is high, the 
multi-step wet denitration system is complicated and occupies an ample 
space, which does not apply to the ship with limited space. For solving 
the complexity of the wet denitration process, one-step wet denitration 
technology is investigated. In 2020, Xiao et al. [24] proposed a 
micro-nano bubble (MNB) oxidation-absorption process based on so-
dium humate for simultaneous desulfurization and denitration. MNBs 
are tiny bubbles less than 50 µm in diameter [6,7,25], which increases 
the gas-liquid contact area. The collapse of MNBs can produce hydroxyl 
radicals (•OH) to further facilitate the removal of NO [24,26]. The re-
sults showed that the removal efficiency of NO could reach more than 
91.1%. Biological treatment is a new method for the removal of NOx. 
Mao et al. [27] proposed a method by biological trickling filter for the 
removal of NO and SO2. The results showed that the highest NOx 
removal efficiency was 60.2%. Biological treatment by 
nitrifier-enriched-activated-sludge (NAS) technology is expected to 
improve NOx removal efficiency. Sepehri et al. [28,29] proposed and 
proved that the enrichment of nitrifying bacteria could be achieved in 
NAS. They also found that a Chlorella vulgaris and NAS consortium 
could enhance nutrient removal and reduce metabolite generation [30]. 
Jin et al. [21] and Deshwal et al. [31] dissolved ClO2 gas in water to 
directly remove NOx in a bubbling reactor, and the NOx removal effi-
ciency was 66–72%. Furthermore, Deshwal et al. [32] used acidic 
NaClO2 solution to remove NOx from the simulated flue gas. Their re-
sults showed that ClO2, an intermediate product, participated in the 
oxidation and absorption of NOx under acidic conditions, and the 
highest denitration rate reached 81%. The one-step wet denitration 
system is simple, but it is not easy to achieve a denitration efficiency 
exceeding 90%. Research on a one-step denitration system with small 
space occupation and high denitration efficiency is a hot topic in ship air 
pollution control. 

HC is a hydrodynamic phenomenon that occurs when the liquid 
pressure suddenly drops below the vapor pressure and then increases. 
When the local pressure of the liquid drops suddenly, the molecules in 
the weak part of the liquid are pulled apart, forming cavities. The water 
will vaporize and enter the cavities since the pressure is below the 
saturated vapor pressure. When the pressure rises sharply, the cavities 
are compressed adiabatically, producing ultra-high temperature 
(1000–15000 K) and ultra-high pressure (10–500 MP) and eventually 
collapse [33–39]. When cavities collapse, microjets can be formed to 
enhance local mass transfer. The cavitation process can also cause hy-
drolysis, producing •OH [33,40,41]. Chemical reactions can be accel-
erated by the extreme chemical reaction environment created by 
cavitation [35,40,42,43]. Cavitation has been used in biofuel refining 
and wastewater treatment and achieved remarkable results. In addition, 
Oxidant ClO2 is safe, environmentally friendly, low in cost [44], and has 
a robust oxidizing property [45,46], which is beneficial to the oxidation 
and absorption of NOx. Therefore, a novel one-step wet denitration 
method by HC enhancing ClO2 is proposed in this paper. HC reactor can 
effectively improve wet denitration efficiency and reduce the equipment 
footprint. The denitration system mainly includes pumps, pipelines, and 
venturi injectors in practical applications. It takes up a small space 
suitable for ships with limited space. 

We aim at the basic study of treatment theory and technology of 
removing NOx by HC enhancing ClO2. Effects of the ΔP, solution tem-
perature, NO initial concentration, gas flow rate, solution pH, and ClO2 
concentration on the denitration effect were studied during the HC 
enhancing ClO2 circulation denitration experiments, in which the 
optimal experimental conditions were established. On the basis of the 
results of HC enhancing ClO2 circulation denitration, HC enhancing 
ClO2 non-circulation denitration experiments were carried out. We also 

measured the final anions in solutions after denitration by ion chro-
matography and discussed the reaction pathways. 

2. Experimental section 

2.1. Experimental materials 

The experimental setup included a gas feeding system, an HC reactor 
unit, and a flue gas analysis system (Fig. 1). The gas feeding system 
consisted of NO (1000 ×10− 6 mol/mol and 3000 ×10− 6 mol/mol, bal-
ance with N2), N2 (purity≥99.999%), and mass flow controllers (MFC, 
Beijing Sevenstar Electronics Co., Ltd) controlling the gas flow rate, and 
a mixing chamber. The HC reactor unit mainly consisted of a constant 
temperature water bath keeping the solution temperature constant, 
12.0 L of high purity ClO2 solution (ClO2, 11.12 mmol/L, 
purity≥99.99%, Guangzhou ZLDL Materials Technology Co., Ltd, 
Guangdong, China.) and pure water (18.2 MΩ⋅cm at 25.0 ◦C) in the 
thermostat bath tank as denitration solution, a venturi injector (model 
384, Mazzei Injector Company, LLC, Bakersfield, USA.) as the HC 
reactor, and an injection pump (model: LSP02–2B, Baoding Longer 
Precision Pump Co., Ltd.) as a continuous syringe. 1 mol/L H2SO4 so-
lution and 1 mol/L NaOH solution were used to adjust the solution’s 
initial pH value. The solution pH was measured by Mettler-Toledo s210 
SevenCompact™ pH during experiments. The reaction samples were 
analyzed by Thermo Scientific DIONEX ICS-600 ion chromatography 
(Dionex Ionpac™ AS23). ClO2 in samples was detected by a UV spec-
trophotometer (UV-1800, Shimadzu, Japan). A turbine flow transducer 
(LWGY-10, Jinhu Heshi Instrument Co., Ltd., China) was used for 
measuring the liquid flow rate. The phantom v2012 high-speed camera 
with 10,000 fps was used to take photographs of the bubbles at the HC 
reactor outlet. The flue gas analysis system included an electronic 
condenser and a gas analyzer (Gasboard-3000UV, Hubei Cubic-Ruiyi 
Instrument Co., Ltd.). The electronic condenser cooled the flue gas and 
removed moisture for weakening the corrosion of the gas analyzer. The 
gas analyzer measured the concentrations of NO, NO2, and NOx. 

2.2. Experimental procedures 

Before each experiment, high-purity N2 was used to empty the air in 
the pipeline. The denitration solution in the constant temperature water 
bath was drawn by the pump, and the solution was driven to flow 
through the line. Whether the solution flowed through the HC reactor 
was controlled by adjusting valves i and j. The experiment system 
worked either in the circulation denitration mode or non-circulation 
denitration mode. 

The device was in the circulation denitration mode when valves c, d, 
e, g, h, j opened and valves a, b, f, i closed. The HC reactor inlet pressure 
(Pi) and outlet pressure (Po) were adjusted by valves d and h. The liquid 
level of the first stage gas-liquid separator was controlled by valve g. 
When the denitration solution quickly passed through the HC reactor, a 
suction pressure was generated, which sucked the mixed gas into the HC 
reactor, and then a large number of Gas-Filled-Bubbles would be formed 
in the HC reactor. The bubbles and denitration solution flowed through 
the HC reactor and entered the first stage gas-liquid separator. The 
separated gas mixture passed through the second gas-liquid separator, 
the electronic condenser, and the gas analyzer in sequence. Simulta-
neously, the liquid flowed through valve e and then returned to the 
constant temperature water bath. 

The HC enhancing ClO2 non-circulation denitration was an optimi-
zation of the HC enhancing ClO2 circulation denitration. During the non- 
circulation denitration experiment, valves b, d, f, g, h, j opened, and 
valves e, i closed. Valves a, c controlled whether the gas passed through 
the HC reactor. The continuous syringe injected ClO2 solution into the 
pipeline at a constant rate. The ClO2 solution and the NO mixture were 
simultaneously sucked into the HC reactor and reacted. After the gas- 
liquid separation, the solution entered the beaker through valve f. 

J. Yang et al.                                                                                                                                                                                                                                    



Journal of Environmental Chemical Engineering 10 (2022) 107897

3

When the solution overflowed in the beaker, it entered the water tank 
and then flowed through the drain hole to the waste collection point. 
The samples were sampled through valve f, and the gases were analyzed 
by the gas analyzer. 

2.3. Data analysis 

When the NO mixture flowed through the HC reactor, the NO reacted 
with the ClO2 and was removed. The NO removal efficiency is calculated 
as follows: 

ηNO =
(
CNO(b) − CNO(a)

)/
CNO(b) × 100% (1)  

Where ηNO(%) is the NO removal efficiency. CNO(b)(ppm) and 
CNO(a)(ppm) are the NO concentrations before and after denitration. 

The NOx removal efficiency is calculated as follows: 

ηNOx
=

(
CNOx(b) − CNOx(a)

)/
CNOx(b) × 100% (2)  

Where ηNOx
(%) is the NOx removal efficiency. CNOx(b)(ppm) and 

CNOx(a)(ppm) are the NOx concentrations before and after denitration, 

3. Results and discussion 

3.1. The mechanism of HC promoting denitration 

3.1.1. The gas-liquid mass transfer was facilitated by the HC reactor 
Fig. 2 displayed photographs of bubbles in the first stage gas-liquid 

separator. The photographs were taken under the same conditions, 
except for the presence or absence of the HC reactor. The diameters of 
individual bubbles with and without the HC reactor were about 4 mm 
and 23 mm. The volume of a single bubble was about 190 times lower 
due to the presence of the HC reactor. Therefore, the HC reactor could 

Fig. 1. Schematic diagram of experimental system: (1–2) gas cylinders; (3–4) reduced valves; (5–6) mass flow controllers; (7) gas mixer; (8) continuous syringe; (9) 
HC reactor; (10) pump; (11) constant temperature water bath; (12, 16) pH meter; (13) water tank; (14) drain hole; (15) beaker; (17) gas analyzer; (18) electronic 
condenser; (19) second stage gas-liquid separator; (20) first stage gas-liquid separator; and (a–j) block valves. 

Fig. 2. a. Photograph of bubbles in the first stage gas-liquid separator for the solution passing through the HC reactor. b. Photograph of bubbles in the first stage gas- 
liquid separator for the solution not passing through the HC reactor. 
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increase the gas-liquid contact area, improving gas-liquid mass transfer. 
The micro-jets generated by cavitation also enhanced the gas-liquid 
mass transfer, which further promoted the oxidation of NOx by the 
robust oxidant ClO2. ClO2 oxidized NO to NO2, then NO2 was oxidized to 
nitrate (NO3

− ), as shown in (R1) and (R2) [31]. 

2ClO2 + 5NO+H2O→5NO2 + 2H+ + 2Cl− (R1)  

ClO2 + 5NO2 + 3H2O→5NO3
− + 6H+ +Cl− (R2) 

The overall chemical reaction equation for the NO removal could be 
written as: 

3ClO2 + 5NO+ 4H2O→5NO3
− + 8H+ + 3Cl− (R3)  

3.1.2. Gas phase mass transfer was enhanced by the HC reactor 
The structure of the HC reactor was shown in the Supplemental In-

formation section, Fig. 1S. When the liquid flowed into the constricted 
section of the reactor, the liquid flow rate increased, so the kinetic en-
ergy of the liquid increased. The pressure energy of the liquid decreased 
according to the principle of energy conservation. Under low pressure, 
ClO2 and H2O molecules volatilized and existed in Gas-Filled-Bubbles. 
When the fluid passed through the expansion section of the HC 
reactor, the fluid pressure increased, and the bubbles were compressed 
and became smaller, promoting intermolecular collisions and improving 
gas phase mass transfer. 

3.1.3. Influence of •OH generated by the HC reactor on denitration 
Cavitation could cause the pyrolysis of water molecules to generate 

•OH, according to R4 [47–51]. 

H2O→ • OH+ • H (R4) 

NOx might react with •OH, ultimately transforming to nitrite (NO2
− ) 

and NO3
− , as shown in R5-R8 [52]. 

NO+ • OH→NO2
− +H+ (R5)  

NO+ • OH→NO2 + • H (R6)  

2NO2 +H2O→NO2
− +NO3

− + 2H+ (R7)  

NO2 + • OH→NO3
− +H+ (R8) 

The result of pure water denitration using an HC reactor was shown 
in the Supplemental Information section, Fig. S2. It could be found from 
Fig. S2 that the NOx removal efficiency dropped quickly from 41.0% 
(70 s) to 31.9% (75 s) in 5 s, which indicated that •OH had no signifi-
cant effect on NOx removal in this work. The reason might be that the 
low solubility of NO made it difficult for •OH to contact NO molecules, 
which made R5 and R6 difficult to occur. Therefore, the improvement of 
the mass transfer process might be the main reason for the HC reactor to 
improve the denitration effect of ClO2. 

Fig. 3. Effect of the ΔP on NOx removal. (Conditions: gas flow rate = 1.0 L/min, NO initial concentration 1000 ppm, ClO2 concentration 0.01 mmol/L, solution 
temperature 25.0 ◦C.) a. Denitration mechanism of HC enhancing ClO2. b. Variations of the duration for ηNOx 

over 90% with ΔP. c. Variations of solution pH after 
600 s denitration with ΔP. 
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3.2. Effect of the ΔP on denitration 

Fig. 3 displayed the effects of the ΔP on denitration during the HC 
enhancing ClO2 circulation denitration experiments. The effects of the Δ 
P on the denitration effect were presented in Fig. 3b and Fig. 3c when the 
Pi was 100 kPa, 200 kPa, 300 kPa, 400 kPa, and the Po remained 30 kPa. 
The ΔP was defined as: 

ΔP = Pi − Po (3) 

Plenty of Gas-Filled-Bubbles could be created by the HC reactor, 
which extended the gas-liquid contact area. The number and size of the 
Gas-Filled-Bubbles were affected by cavitation intensity. The cavitation 
intensity was affected by ΔP in the experimental process. Cavitation 
number (Cv) could be used to express the cavitation intensity. The 
smaller Cv might cause a higher cavitation intensity. Cv is calculated as 
[53,54]: 

Cv = (Po − Pv)

/

(
1
2

ρV2
th) (4)  

where Pv is the solution’s saturated vapor pressure, Vth the liquid ve-
locity at the throat of venturi, and ρ the liquid density. 

Table 1 indicated that Cv remained about 9.00, 4.00, 2.56, and 1.92 
when ΔP was 70 kPa, 170 kPa, 270 kPa, and 370 kPa. As shown in Fig. 4, 
the smaller the Cv, the larger the Re, and the more intense the turbu-
lence, which would promote the generation of smaller and more bubbles 
(Fig. 4), expand the gas-liquid contact area, and improve the mass 
transfer efficiency. 

As shown in Fig. 3b, the duration for ηNOx 
over 90% had a first in-

crease followed by a decrease with an increase of ΔP, indicating that 
there were two reasons. On the one hand, Cv decreased as the ΔP 
increased. The cavitation intensity was enhanced, which would aggra-
vate the extreme chemical reaction environment such as high temper-
ature, high pressure, and micro jets produced by cavitation (Fig. 3a). 
Moreover, with the enhancement of cavitation strength, a stronger 
micro jet would promote the generation of smaller and more bubbles, 
which would expand the gas-liquid contact area, and improve the mass 
transfer efficiency. These improved the denitration effect. On the other 
hand, Vth increased as the ΔP increased, which would result in a 
decrease in the total chemical reaction time. These inhibited the deni-
tration effect. When the promoting effect was more significant than the 
inhibiting effect, the duration for ηNOx 

over 90% increased; otherwise, it 
decreased. Results showed that the optimal ΔP was 270 kPa. The 
experimental result was also confirmed by the relationship of solution 
pH after 600 s denitration with ΔP. The lowest pH after 600 s deni-
tration was obtained at 270 kPa of ΔP (Fig. 3c). 

3.3. Effect of initial solution pH on NOx removal 

Fig. 5 displayed the effect of solution pH on denitration during the 
HC enhancing ClO2 circulation denitration experiments. Fig. 5a showed 
that in the range of pH 3–11, the ηNOx 

over 90% could be achieved. The 
duration for ηNOx 

over 90% decreased with the increase of pH, which 
might be due to the different chemical reactions in acidic and alkaline 
media. 

As seen in the Supplemental Information section, Fig. 3S, nitrate 
(NO3

− ) and chloride (Cl–) accounted for the majority in the solution 

after 600 s circulation denitration. The primary process of HC enhancing 
ClO2 denitration was (R1-R3). 

After the disproportionation of a small amount of ClO2, chlorine gas 
(Cl2) might be produced in an acidic medium, as shown in (R9) and 
(R10) [21,31,55]. 

2ClO2 +H2O→H+ +ClO3
− +HClO2 (R9)  

4H+ + 2ClO3
− + 2Cl− →2ClO2 +Cl2 + 2H2O (R10) 

Cl2 was reactive with NO according to (R11) and (R12) [56]. 

Cl2 +NO+H2O→NO2 + 2H+ + 2Cl− (R11)  

3Cl2 + 2NO+ 4H2O→2NO3
− + 6Cl− + 8H+ (R12) 

The HClO2 could oxidize NO into NO3
− , according to R13. 

4NO+ 3HClO2 + 2H2O→4NO3
− + 3Cl− + 7H+ (R13) 

In an alkaline medium, the disproportionation of ClO2 [44,57] sped 
up with increasing pH. It led to the formation of chlorite (ClO2

− ) and 
chlorate (ClO3

− ), as shown in R14. 

2ClO2 + 2OH− →ClO2
− +ClO3

− +H2O (R14) 

ClO2
− could remove NO, as shown in R15 and R16 [31]. 

2NO+ClO2
− →2NO2 +Cl− (R15)  

4NO2 +ClO2
− + 4OH− →4NO3

− +Cl− + 2H2O (R16) 

The overall reaction could be written as: 

4NO+ 3ClO2
− + 4OH− →4NO3

− + 3Cl− + 2H2O (R17) 

It could be seen from (R3) and (R17) that each mole of ClO2 could 
treat more NO than ClO2

− . So as the pH increased, the duration for ηNOx 

over 90% decreased. 
Besides, in an alkaline medium, some NO2 might be absorbed to form 

NO3
− and NO2

− , then NO2
− was oxidized to NO3

− by ClO2, according to 
(R18) and (R19). 

2NO2 + 2OH− →NO3
− +NO2

− + H2O (R18)  

5NO2
− + 2ClO2 +H2O→5NO3

− + 2Cl− + 2H+ (R19) 

R18 explained why the highest NO2 concentration decreased with 
the increase in pH (Fig. 5b). 

3.4. Effect of solution temperature on NOx removal 

The diffusion behavior, dissolution, and reaction characteristics of 

Table 1 
Cv, Vth and Liquid flow (Q1) under different ΔP.  

ΔP Q1 Vth Cv 

(kPa) (m3/h) (m/s) - 

70  0.24  5.31  9.00 
170  0.36  7.96  4.00 
270  0.45  9.95  2.56 
370  0.52  11.49  1.92  

Fig. 4. The variation of Re with Cv.  
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molecules or ions in the solution are affected by the reaction tempera-
ture [19]. The effect of reaction temperature on NOx removal was 
studied experimentally by varying solution temperature from 10.0 ℃ to 
55.0 ℃ as shown in Fig. 6. From Fig. 6a, the duration for ηNOx 

over 90% 
had a change of increasing at first and then dropping with the rise of 
solution temperature. The maximum value of the duration for ηNOx 

over 
90% was achieved at 25.0 ℃. For this, there were two reasons. On the 
one hand, The increase in solution temperature will accelerate the 
diffusion rate of NO and ClO2 molecules, causing an increase in the 
chemical reaction rates[51]. Meanwhile, pv increased as the solution 
temperature increased. Thereby Cv was down. These promoted the 
denitration effect. On the other hand, the elevated temperature 
increased the escape rate of ClO2 gas. Meanwhile, An increase in tem-
perature would reduce the solubility of NO and NO2 in aqueous solution 
[16,19,32]. These inhibited the denitration effect. 

Fig. 6b displayed the effect of reaction temperature on the solution 
pH after 600 s denitration. The denitration solution’s initial pH value 
was about 5.70 in this series of experiments. The solution pH after 600 s 
denitration was 4.79, 4.74, 4.80, and 4.90. The lowest pH after 600 s 
denitration was obtained at 25.0 ℃. Higher denitration efficiency has 
lower pH, according to (R3). Thus, 25.0 ℃ was the optimum solution 
temperature for HC enhancing ClO2 circulation denitration from 10.0 ℃ 
to 55.0 ℃. 

3.5. Effect of NO initial concentration on NOx removal 

The effect of NO initial concentration on denitration during the HC 
enhancing ClO2 circulation denitration experiments was shown in Fig. 7. 
Fig. 7a showed that with the increase of the NO initial concentration, the 
duration of the NO concentration being 0 ppm gradually decreased. In 
other words, the higher NO initial concentration led to a shorter dura-
tion for ηNOx 

over 90% (Fig. 7b). The NO concentration gradually 
increased to the near initial NO concentration due to the rapid con-
sumption of ClO2. The curves of NO and NOx concentrations versus time 
did not overlap (Fig. 7a) because a small amount of NO2 was produced in 
the denitration process (Fig. 7c). 

Fig. 7d showed the solution pH after 600 s denitration at different 
NO initial concentrations. The pH of the solution was determined by the 
amount of NOx absorbed. The greater the amount of NOx absorption, the 
lower the pH. The NOx absorption was affected by the NO initial con-
centration and the duration for ηNOx 

over 90%. The longer the duration 
of the high denitration rate and the higher the initial NO concentration, 
the more NOx absorption. Results showed that with the increase of NO 
initial concentration, the solution pH after 600 s denitration showed a 
decreasing trend, which was also because the lower initial concentration 
of NO took longer to consume ClO2 dose in the solution, which caused 
more ClO2 to overflow. However, when the NO initial concentration 
increased from 1000 ppm to 1250 ppm, the pH values were almost 

Fig. 5. Effect of initial solution pH on denitration. a. Variations of the duration for ηNOx 
over 90% with solution pH. b. Variations of NO2 concentration with time 

under different initial solution pHs. 

Fig. 6. Effect of solution temperature on denitration. (Conditions: gas flow rate 1.0 L/min, NO initial concentration 1000 ppm, ClO2 concentration 0.01 mmol/L, ΔP 
270 kPa) a. Variations of the duration for ηNOx 

over 90% with solution temperature. b. Variations of solution pH after 600 s denitration with solution temperature. 
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equal, which showed that the ClO2 dose in the solution could be almost 
utilized when the NO initial concentration was 1000 ppm. 

3.6. Effect of gas flow rate on NOx removal 

The influence of the NO gas flow rate on the denitration effect during 

the HC enhancing ClO2 circulation denitration experiment was studied.  
Fig. 8 showed the experimental results. Fig. 8a was the variation of the 
duration for ηNOx 

over 90% with gas flow rate. The larger the gas flow 
rate was, the shorter the duration for ηNOx 

over 90% took. Solution pH 
after 600 s denitration under different gas flow rates in Fig. 8b reflected 
very interesting results. Although a larger gas flow rate consumed ClO2 

Fig. 7. Effect of NO initial concentration on denitration. (Conditions: gas flow rate 1.0 L/min, ClO2 concentration 0.01 mmol/L, solution temperature 25.0 ◦C, ΔP 
270 kPa) a. Variations of NO concentration and NOx concentration with time under different NO initial concentrations. b. Variations of the duration for ηNOx 

over 
90% with NO initial concentration. c. Variations of NO2 concentration with time under different NO initial concentrations. d. Variations of solution pH after 600 s 
denitration with NO initial concentration. 

Fig. 8. Effect of gas flow rate on denitration. (Conditions: NO initial concentration 1000 ppm, ClO2 concentration 0.01 mmol/L, solution temperature 25.0 ◦C, ΔP 
270 kPa) a. Variations of the duration for ηNOx 

over 90% with gas flow rate. b. Variations of solution pH after 600 s denitration with gas flow rate. 
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in the solution faster, the lowest pH was obtained when the gas flow rate 
was 1.0 L/min. It might be because the gas flow rate increased from 
1.0 L/min to 1.6 L/min cavitation bubbles were more difficult to 
collapse, leading to the formation of cavity cloud, which reduced the 
cavitation intensity[58], resulting in more ClO2 overflows (Table S1). 
Therefore, the optimal gas flow rate was 1.0 L/min under the experi-
mental conditions. 

3.7. Effect of initial ClO2 concentration on denitration 

Fig. 9 showed the effect of initial ClO2 concentration on NOx removal 
during the HC enhancing ClO2 circulation denitration experiments. The 
increase in initial ClO2 concentration improved the denitration effect. 
The higher the initial ClO2 concentration was, the longer it took for the 
NOx concentration to drop to about 0 (Fig. 9a); namely, the higher the 
concentration of ClO2 was, the longer duration of ηNOx 

over 90% took, as 
shown in Fig. 9b (Except for the duration of the initial ClO2 concen-
tration of 0.001 mmol/L). It could be found from Fig. 9b that the 
duration of pure water denitrification for ηNOx 

over 90% was 40 s, which 
might be the reason for the experiment design, and the actual effective 
duration for ηNOx 

over 90% was 0 s. The solution pH was measured 
continuously during the experiments, and the experimental results were 
confirmed by the variations of solution pH with time under different 
ClO2 concentrations. The solution pH after 1800 s denitration remained 
about 5.91, 4.72, 4.41, 4.30, and 3.78 when the initial ClO2 concen-
tration was 0 mmol/L, 0.01 mmol/L, 0.02 mmol/L, 0.03 mmol/L, and 
0.10 mmol/L (Fig. 9c). 

There was still NO2 in the gas after denitration, and the concentra-
tion of NO2 increased with the initial ClO2 concentration (Fig. 9d). The 

escape property of ClO2 could explain this. NO2 was carried by the 
escape of ClO2, and a higher ClO2 escape rate was caused by a higher 
initial ClO2 concentration, which led to a higher concentration of NO2. 
Therefore, a lower initial ClO2 concentration could reduce the produc-
tion of NO2 and the escape of ClO2 (Table S2). However, the initial ClO2 
concentration should not be too low. A too low concentration would not 
achieve a high denitration effect. As shown in Fig. 9b, when ClO2 con-
centration was 0.001 mmol/L, the actual effective duration for ηNOx 

over 
90% was 0 s, the same as that of ClO2 concentration of 0 mmol/L. 
Therefore, under the premise of ensuring ηNOx 

over 90%, the lowest 
possible ClO2 concentration was the best choice. Within the scope of this 
experiment, 0.010 mmol/L was the best initial ClO2 concentration. 

3.8. Study on HC enhancing ClO2 non-circulation denitration 

During HC enhancing ClO2 circulation denitration, a too-high initial 
concentration of ClO2 led to too high NO2 concentration after deni-
tration. As shown in Fig. 9d, when the initial concentration of ClO2 was 
0.100 mmol/L, the highest concentration of NO2 was 111 ppm. HC 
enhancing ClO2 non-circulation denitration mode was designed to solve 
the problem. 

3.8.1. The experiment of HC enhancing ClO2 non-circulation denitration 
Non-circulation denitration experiments were carried out at solution 

temperature 25.0 ◦C, ΔP 270 kPa, 11.12 mmol/L ClO2 feeding at a rate 
of 4 ml/min, gas flow rate 1.0 L/min, and NO initial concentration 
1000 ppm. As shown in Fig. 10a, the ηNO and ηNOx 

first increased rapidly 
and then stabilized at about 93% and 90%, respectively. The variations 
of solution pH with time also reflected the results of the non-circulation 

Fig. 9. Effect of initial ClO2 concentration on denitration. (Conditions: gas flow rate 1.0 L/min, NO initial concentration 1000 ppm, solution temperature 25.0 ◦C, ΔP 
270 kPa) a. Variations of ηNOx 

with time under different ClO2 concentrations. b. Variations of the duration for ηNOx 
over 90% with ClO2 concentration. c. Variations of 

solution pH with time under different ClO2 concentrations. d. Variations of NO2 concentration with time under different ClO2 concentrations. 
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denitration. One reason for achieving stable and efficient denitration 
efficiency was that cavitation promoted the occurrence of R1–3. Besides, 
NOx might react with •OH, as shown in R5-R8. And then ClO2 would 
oxidize NO2

− to NO3
− . 

Fig. 10b showed the NO2 concentration with time. NO2 concentra-
tion first increased and then stabilized. The highest concentration of 
NO2 was only 34 ppm. One of the reasons might be R8. HC enhancing 
ClO2 non-circulation denitration solved the residual NO2 concentration 
being too high. This research has important guiding significance for the 
practical application of the one-step HC enhancing ClO2 denitration 
method. 

3.8.2. Analysis of anions on denitration 
We took samples at an interval of 40 s, and Fig. 11 showed the 

analysis results of anion products containing nitrogen atoms in the 
samples. It could be found from Fig. 11 that the anion product con-
taining nitrogen atoms was only NO3

− after 280 s non-circulation 
denitration, which meant that most of the absorbed NOx were con-
verted to NO3

− . The NO3
− was the natural composition of seawater and 

was non-polluting to the ocean. We did not detect NO2
− , which was very 

toxic [59]. It was also observed that the trend of the measured values 
and the theoretical ones was the same. 

4. Conclusions 

We carried out a detailed study to check the effects of various pa-
rameters on denitration using HC enhancing ClO2. Results showed that 
the HC reactor mainly enhanced the mass transfer process to enhance 
the removal of NOx by ClO2. In a wide pH range of 3–11, the ηNOx 

was 
more than 90% during the HC enhancing ClO2 circulation denitration 
experiments. The duration for ηNOx 

over 90% initially increased to a 
maximum value and then decreased with the rise of operating conditions 
like solution temperature and ΔP. The duration for ηNOx 

over 90% 
decreased with increasing NO initial concentration and gas flow rate and 
increased with increasing initial ClO2 concentration. Considering the 
application to the practical engineering, based on the results of HC 
enhancing ClO2 circulation denitration, the HC enhancing ClO2 non- 
circulation denitration experiment was carried out under conditions of 
gas flow rate 1.0 L/min, NO initial concentration 1000 ppm, ΔP 270 
kPa, solution temperature 25 ◦C, and 11.12 mmol/L ClO2 feeding at a 
rate of 4 ml/min. The results showed that ηNO and ηNOx 

reached 93% and 
90%, respectively. The NO3

− was the only final product of denitration 
and was non-polluting to the ocean. The research findings showed that 
the HC enhancing ClO2 denitration method had huge potential for in-
dustrial application in flue gas cleaning. 
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tration 1000 ppm, 11.12 mmol/L ClO2 feeding at a rate of 4 ml/min, solution temperature 25.0 ◦C, ΔP 270 kPa.). 

Fig. 11. Analysis of anion products containing nitrogen atoms in the samples. 
(Conditions: gas flow rate 1.0 L/min, NO initial concentration 1000 ppm, 
11.12 mmol/L ClO2 feeding at a rate of 4 ml/min, solution temperature 
25.0 ◦C, ΔP 270 kPa.). 
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