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Abstract: This study aims to introduce and discuss the recent research, development and application
of wave energy marine buoys. The topic becomes increasingly appealing after the observation
that wave energy technologies have been evolving in the recent decades, yet have not reached
convergence. The power supply is usually the bottleneck for marine distributed systems such
as buoys. Wave energy technologies are especially useful in this sense, as they can capture and
convert the promising “native” renewable energy in the ocean (i.e., wave energy) into electricity.
The paper enumerates the recent developments in wave energy capture (e.g., oscillating bodies)
and power take-off (e.g., nanogenerators). The study also introduces the typical marine buoys and
discusses the applicability of wave energy technologies on them. It is concluded that the wave energy
technologies could be implemented as a critical addition to the comprehensive power solution of
marine distributed systems. Wave energy buoys are likely to differentiate into “wave energy converter
buoys” and “wave-energy-powered buoys”, which is indicated by the ratio of the generated power
to the load power.

Keywords: marine buoy; wave energy; energy capture; power take-off; triboelectric nanogenerator;
renewable energy

1. Introduction

A buoy refers to a float on the sea surface, traditionally used to show a navigable
channel or to indicate reefs, submerged wrecks, etc. Ever since the 1920s, it has become an
important platform, carrying a variety of monitoring devices [1]. Their in-situ measure-
ment data are getting more and more critical in disaster prevention, resource exploitation,
scientific research and national security [2,3]. Modern technologies have gradually made
the buoy multifunctional, or “smarter” [4]. Smart buoys can be embedded into a full-
coverage marine information-monitoring network consisting of radars, vessels, satellites
and land-based monitoring nodes [5,6]. With extensive application scenarios, the marine
(monitoring) buoys are developing rapidly [7,8]. The U.S. National Data Buoy Center
owns 1324 buoy stations that collect and transmit ocean observation data [9]. The World
Meteorological Organization and the UN Educational, Scientific and Cultural Organization
jointly initialized a data buoy cooperation, namely, the Drifting Buoy Cooperation Panel,
which deploys over 400 anchored buoys and 1250 drifting buoys [10].

The extensive application/deployment of marine buoys requires an essentially eco-
nomically feasible and physically feasible power solution. In fact, powering the distributed
devices off the grid has always been a bottleneck problem [11]. Due to limited accessibility
to power supply, the traditional buoys have to work in certain ways to reduce power
consumption. One option is to adopt devices with only a low voltage and low power. Oth-
erwise, the devices need to operate under intermittent working mode, in which, they work
and hibernate periodically [12,13]. The battery limits the independence of the distributed
systems; that is, until the emergence of renewable energy technologies. In current practices,
many buoys work with a combination of solar panels and rechargeable batteries [14]. This
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reduces the hibernating interval, making most small-scale devices functional all of the time,
which is critical for real-time monitoring/data acquisition.

As a very “native” and almost exclusive energy in oceans, wave energy would become
the “target fuel” of marine buoys for many reasons [15]. Wave energy harvesting is a
carbon-free process used to achieve power conveniently in oceans (71% of Earth’s surface),
making it a very promising renewable energy [16,17]. Wave energy comes to marine buoys
more naturally due to its “surface” distribution. Wave energy highly concentrates within
a small portion of the water depth (i.e., near the surface). The dispersion relationship
indicates that the water particle velocity decays to 5% of the maximum particle velocity
(at the surface) as the depth increases to half of the wavelength [18]. The application domain
of marine buoys is exactly the “prime zone” of wave energy.

Solar energy and wind energy are the major competitors of wave energy [19], espe-
cially in the aspect of powering marine buoys. Some marine buoys have already adopted
solar/wind as their power resources (e.g., WindSentinel buoy [20]). However, that does not
mean that they are the ultimate solutions for marine buoys. Ocean waves transmit in water,
a medium that has a much higher density than air, meaning that they could yield a higher
energy density than wind. In fact, the power density of a wind farm is typically in the order
of 0.4–0.6 kW/m2, whereas wave energy is typically in the order of several 2–3 kW/m2

(solar photovoltaics typically generate power in the order of 0.1–0.2 kW/m2) [21]. Further-
more, wave energy is more consistent than solar/wind energy. In the U.K., wave energy
can be harvested up to 90% of the time, whereas solar/wind can be harvested for only
20–30% of the time [22].

In terms of engineering, the wind turbines’ requirement for clearance height is quite
incompatible with marine buoys. The clearance height means that the buoy needs to
include an additional structure with a considerable (relative to the height of the buoys)
freeboard [23,24]. This would significantly increase the capsizing vulnerability, as well
as the structural materials, and harm the concealment of marine buoys. Similarly, solar
panels’ requirement for surface area forms a challenge for marine buoys [19]. Considering
the relatively lower power density of the solar energy, it would create a contradiction
between the buoy’s horizontal dimension and its load capacity. In addition, solar panels
need to stay away from run-up waves, making a solar power system less stable in marine
environments [10,13]. Figure 1 is a concise diagram showing the primary engineering
challenges corresponding to various power systems on buoys.
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Figure 1. Engineering challenges for various power systems on buoys.



J. Mar. Sci. Eng. 2022, 10, 566 3 of 19

In addition, placing solar panels within the buoys may require bending the panels
around the surface (e.g., a spherical shape) to protect them from the marine environment
within the hull. This is difficult enough as is, yet can be aggravated by the filter of water
overtopping the buoy. Reports mentioned that guano from birds usually accumulate on the
surface of buoys in practice, which may greatly impair the efficiency of solar panels over
time [10]. There are also considerable ecological concerns with the offshore wind turbines
(e.g., noise, collision, electromagnetic field). For example, floating wind turbines could
increase the risk of seabird–turbine collision, as the motions of the turbines make collision
risk more dynamic [25].

The primary motivation for this review study is the importance of wave energy marine
buoys from multiple perspectives. Marine buoys have become the most common, small-
to-medium-scale (relative to offshore platforms etc.) floating structure that needs to work
off the grid. Therefore, they are very representative in that they reflect the development
of the distributed system in this scale (roughly 10−1 m~10 m) [15,26]. On the other hand,
wave energy utilization on marine buoys primarily aims to provide in situ power supply,
which is less demanding than power stations (aiming to supply power to the grid or
other systems) [27,28]. In this sense, reviewing wave energy marine buoys also renders a
benchmark of wave energy technologies. The study will help to understand how well the
wave energy technologies could power a distributed system.

The present paper focuses on the application of wave energy technologies on marine
buoys. Therefore, common issues of marine buoys, such as batteries, equipment and
mooring, are not covered [14,29,30]. The following content is organized as follows: Section 2
reviews the energy capture from wave to structure. Section 3 reviews power take-off
(PTO) from structure to wire, with an emphasis on the generators. Section 4 reviews the
applications of marine buoys. Section 5 presents the discussions and concludes the review.

2. Energy Capture from Wave to Structure

The wave energy utilization can be decomposed into two critical processes: (wave)
energy capture and PTO. Figure 2 depicts the generic working mechanism of a wave energy
marine buoy. Energy capture is upstream of wave energy utilization, which refers to the
critical process of harvesting the wave (fluid) energy with the main structures (solid) and
achieving the mechanical energy for PTO. Therefore, energy capture is governed by the
fluid–structure interactions (i.e., hydrodynamics), which are subject to the inputs (e.g., wave
height, period, water depth, etc.) and the main structure design (such as floating structure
dimension, geometry, mass, moment of inertia, center of gravity, mooring configuration
and stiffness, etc.). Though they have not converged, mainstream designs of energy capture
include three categories: oscillating water columns (OWC), oscillating bodies (OB) and
overtopping devices [31].
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Figure 2. A mechanism diagram of a wave energy marine buoy.
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Overtopping devices are structures that “trap” the water from the run-up waves [32].
The trapped water provides a water head higher than the mean sea surface that turns
into water flow out through a duct, which drives an axial flow turbine and, in turn, the
generator in order to produce electricity [33]. Wave Dragon is the world’s first grid-
connected floating overtopping device [34]. Overtopping devices are advantageous in that
they largely stabilize the unstable input waves to the PTO and they usually work with
low-head hydro turbines (standard for hydroelectric stations) [33,35]. Overtopping devices
usually involve larger dimensions (e.g., Wave Dragon [34]) or fixed infrastructures (e.g.,
OBREC [35]), as they work in a similar way to a reservoir/hydroelectric station. Therefore,
an overtopping device is not considered for marine buoys and the following discussions
concern the other two types: OWC and OB.

2.1. OWC Prototype for Marine Buoys

The OWC is one of the most common types of wave energy capture [36]. In brief, the
OWC involves a hollow structure in order to form an air chamber. The chamber interacts
with both the seawater (e.g., at the bottom of the chamber) and the air turbine (e.g., at the
top of the chamber). The wave motions compress and depress the air in the chamber so that
the air flows in and out the chamber through the turbine (e.g., Wells turbine) to drive the
generator [37]. The most significant characteristic of the OWC is the pneumatic PTO. Early
studies on wave energy capture focused on the OWC, making it relatively more established.
Obviously, the OWC needs a bidirectional turbine instead of a unidirectional turbine (more
conventional). The common air turbines for the OWC’s pneumatic PTO are the Wells
turbine, Dennis–Auld turbine and impulse turbine. The Wells turbine, a self-rectifying
axial flow turbine, is most common for OWC. This turbine consists of symmetrical blades
on the rotor so that the fluctuating airflow induces a unidirectional rotation of the rotor [38].
The impulse turbine is also self-rectifying, with its rotation axis aligned with the airflow.
Therefore, the airflow is directed to its blades through a guide duct. The Dennis–Auld
turbine is a modification to the variable pitch Wells turbine (but has a much larger pitching
range) [39].

Ever since the 1970s, industrialized nations (such as the U.K., Australia and Japan) have
constructed OWC systems [40]. These OWCs were (test) deployed either at a fixed position
onshore/nearshore or floating with a moored position. The Islay OWC, a representative full-
size OWC plant with a rated power of 500 kW, was constructed on a rocky cliff in 2000. [41].
Some OWCs have been integrated with breakwaters (e.g., the breakwater OWC in Spain
has a rate power of 18.5 kW for each unit) [42]. Compared to these fixed OWCs, floating
OWCs could cover offshore wave energy and have a greater flexibility in deployment. For
example, the Oceanlinx tested in 2010 is a grid-connected 1:3 scale prototype of a floating
OWC (the full-scale prototype is rated at 2.5 MW). More floating OWCs (at a smaller scale)
have been analyzed numerically and tested in wave basins [43]. Observations regarding
the current OWCs indicate that their whole systems are generally larger than OBs. OWCs
could yield a desirable capture width, yet their overall performances are usually limited by
the conversion efficiency of the air turbine [38,44]. This should be largely attributed to the
working medium (i.e., air). The air turbine is superior in that the turbine and the generator
are prevented from making contact with seawater, reducing their corrosion risk [36,38].
However, some OWCs do possess desirable characteristics for integration with marine
buoys: floating, axisymmetry and acceptable (small to medium) dimensions.

Powering a marine buoy with wave energy can be dated back to the late 1940s,
when Yoshio Masuda, a pioneer of modern wave energy technologies, developed a wave
energy navigation buoy. Masuda’s buoys implemented rectifying valves along with their
unidirectional air turbine [45]. To improve the capture width of the floating buoy, the
backward bent duct buoy (BBDB) was designed later [46]. The BBDB replaces the (previous)
central tube with an L-shaped OWC so that the BBDB can also accommodate shallow water.
A 1:4 scale model of the BBDB has gone through successful sea trials [47]. On top of the
early developments, the later integration of OWC to the floating structure has given rise to
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the OWC spar-buoy. The OWC spar-buoy is an axisymmetric floating structure attached
with a vertical tube of two open ends. The natural frequency of the OWC is determined
by the tube draft and the tube diameter. This prototype has not only been tested for wave
energy navigation buoys [48] but also for wave energy power stations [49]. Studies are
optimizing the OWC spar buoy to further release its potential [50,51].

2.2. OB Prototype for Marine Buoys

OB is the type with the largest share in various wave energy converter (WEC) designs.
Essentially, the category consists of all WECs using the motions (e.g., heave, pitch) of
their (or parts of their) bodies to extract wave energy. Roughly, the OB designs take
approximately two thirds of the total WEC designs [21]. Point absorbers (mainly utilizing
the heave motion) and flap-type designs (mainly utilizing the pitch motion) are the most
common OB-type WEC [52]. Currently, much progress in OB-type WEC has taken place.

A common practice to utilize the heave motion is through adopting a two-body system,
with one as a stator and one as a motor. The earlier practice of the two-body point absorber,
the IPS buoy, consists of a buoy rigidly connected to a submerged tube with a piston to
convert the relative motion to drive the generator [53]. The AquaBuOY has adopted a 3 m
diameter float attached to a 21.3 m shaft so that the heave motion drives the piston in the
shaft [54]. The Wavebob is another two-body point absorber consisting of two co-axial
buoys. The relative axial motions are converted into electricity. A fully submerged body is
rigidly connected to the lower body to tune to the wave frequency [55]. The PowerBuoy3
developed by the Ocean Power Technologies consists of a base spar and a motor float.
Their different hydrodynamic characteristics will induce significant relative heave motion
between the two parts to drive its PTO effectively [56].

The Pelamis is a snake-like OB-type WEC that is composed of four cylindrical sections
hinged together. The relative pitching of the two adjacent sections drives the hydraulic
motor and, in turn, the generator. After full-scale sea trials of a prototype (750 kW rated
power), the Pelamis was deployed as the first grid-connected WEC worldwide [57]. Other
“pitching”-type WEC designs tend to be more on the “fixed” side. Oyster is such a WEC
fixed onto the seabed, and its buoyancy pendulum swings with the waves to drive the
hydroelectric generator [58]. The BioWAVE works similarly, but it can accommodate the
variable wave directions by rotating around its axis [59].

Pitch and heave can be utilized comprehensively on a floating platform. In 2015, a
100 kW wave energy station, “Xiandao 1”, was launched, in which, large floating bodies are
connected to the platform with a hydraulic generator. Sea trials reveal that the configuration
has the potential to achieve greater power, so Wanshan was followed by Xiandao 1 (260 kW)
and Zhoushan (500 kW) [60]. The Wavestar developed by Demark works with multiple
floats, where each float is a single-body point absorber. The floats are attached by arms to
the platform so that their heave motions can be transferred via hydraulics into the rotation
of a generator [61]. Wavestar has gone through tests from 1:40 scale (in wave basin) to 1:2
scale (in sea trials), and is capable of outputting a power of 600 kW.

The single-body point absorber is also a promising mechanism to extract wave
energy [62]. In 2016, AquaHarmonics won the Wave Energy Prize (a U.S. Department
of Energy sponsored, nationwide design-built-test) out of the 92 candidates. AquaHarmon-
ics is a very typical OB-type wave energy buoy that rises and falls on the waves passing
by, and spins the generator inside through a tether [63]. A floating self-powered buoy
developed in 2021 (moored, 40 cm height and 35 cm diameter) could utilize surge, sway,
roll and pitch comprehensively through the relative motions of many rolling pellets inside
the buoys [64].

This above context has enumerated the representative progresses in wave energy
capture and their characteristics. As far as a marine buoy is concerned, essentially, it prefers
a smaller size, structure simplicity and axisymmetry, which is fundamentally different
from large floating platforms [65]. Therefore, wave energy capture on marine buoys is
preferably in the form of an OWC spar buoy (e.g., Figure 3a), two-body point absorber
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(e.g., Figure 3b) or single-body point absorber (e.g., AquaHarmonics). Compared with
the two-body point absorber, the water column of the OWC spar buoy acts as the motor.
Similarly, the internal component of the single-body point absorber serves the purpose
of the generator. The appropriate wave energy capture should create the proper motions
toward the corresponding PTO. 

3 

 
  Figure 3. Types of wave energy capture applicable for marine buoys: (a) OWC spar type; (b) two-body
point absorber.

3. PTO from Structure to Wire

The PTO is the other critical process that essentially “converts” the mechanical energy
into electrical energy, which is governed by structure–generator interactions (i.e., electrody-
namics). The performance of the system is highly dependent on the interactions between
the wave environment, main structure and the generators. Wave-to-wire modelling (W2W)
is being developed to address these interactions with high fidelity [66,67]. The PTO de-
termines not only the output power, but also the dimension, cost and operational life of
the system. Based on the generator mechanism, this study classifies wave energy PTOs
for marine buoys according to the generator type: electromagnetic generator (EMG) and
triboelectric nanogenerator (TENG).

3.1. EMG-Based PTO

EMG is the dominating mechanoelectrical converter, the core of the conventional
wave energy PTO [28]. Unlike in thermal or hydraulic power plants, the input wave does
not provide a stable medium flow (e.g., water flow). Therefore, the direct wave-induced
motions should go through a secondary transmission system before they become the regular
mechanical motion (e.g., shaft rotation) preferable to the EMG [68]. The overtopping devices
demonstrate the concept of converting the random wave input to relatively stable water
flow (through reservoir). However, their dimensions do not conform to the preference of
marine buoys [32]. A similar preference applies to the secondary transmission associated
with the generator for either OWC-type or OB-type wave energy marine buoys.

The EMGs for wave energy marine buoys mainly consist of conventional rotating
generators (mainly utilizing the pitch motion) and linear generators (mainly utilizing the
heave motion). The conventional rotating generator directly converts the gear/turbine
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rotation into electricity, whereas the linear generator directly converts the linear (e.g.,
relative heave) motion into electricity [69]. Wave-induced motions of floating structures
are usually very significant in heave. Therefore, the linear generator inputs the (wave-
induced) reciprocating vertical motion to the permanent magnet vibrator so that it follows
the undulating motion characteristics of waves. This simplifies the wave energy PTO
process and yields a desirable power density and power factor. Generally speaking, linear
generators are innovative and convenient, particularly for wave energy PTO [28].

The University of Beira Interior has designed a linear switched reluctance generator for
wave energy conversion. The analysis showed that the linear switched reluctance generator
could yield a high power density, robustness, and installation easiness [70]. A novel direct
drive permanent magnet linear generator developed by Rhinefrank et al. has been tested
on a buoy, and provided 50 W power under 1.5 m waves. The translator shaft is anchored
to the sea floor, and the buoy moves armature coils relative to the permanent magnet
translator in order to induce the current [71]. Yu et al. have developed a permanent magnet
linear generator with a Halbach array for direct wave energy conversion. The current of
the windings is 5.4 A when the linear generator is at a rated load. Under this situation, the
generator yields an output power of 1 kW, while the copper loss is 80.5 W [72]. SeaBeav is a
taut-moored dual-body WEC jointly developed by Oregon State University that consists of
a cylindrical spar (in the center) and an outer Taurus-shaped buoy. Inside the float are rings
of radially magnetized arc segment magnets surrounding the spar. The relative motion
between the spar and the buoy is directly converted to electricity (output of 200 V and 2 A
per division) [73]. The linear direct generator greatly reduces the PTO’s complexity (by
saving secondary transmission) and the transmission loss, which would be particularly
suitable for heaving buoys if they could be accommodated with single-body carriers.

The secondary transmission system for the EMG could use air/oil/gear as a medium
to achieve rotations accessible to common generators. For OWC, the wave motions are
converted to turbine rotations driving the generator. Henriques et al. came up with a
systematic design methodology in their study, and the output power of the analyzed EMG
in the spar-type OWC can reach 343 kWh/m3 [74]. The two-body PowerBuoy3 designed
by Ocean Power Technologies was installed with a load capacity of 40 kW. Its PTO involves
a mechanical transmission from the relative linear motion to the EMG rotation [75]. Ding
et al. designed an electromagnetic wave energy collector that uses an inertial pendulum
to convert the wave-induced pitch motion into rotary motion to drive the rotating EMG.
The eccentric pendulum is fixed with the generator rotor so that they can rotate together
relative to the generator stator. In order to tune the natural frequency of the device with the
wave frequency, the pitch angle of the pendulum can be adjusted. The maximum power
density of the device reaches approximately 200 W/m3 [76]. Nicola et al. developed a WEC
based on a permanent magnet motor directly coupled with a vertical inertial pendulum.
The relative rotation of the pendulum with respect to the hull is used to drive the generator
shaft [77]. Yerrapragada et al. developed an electromagnetic PTO based on a horizontal
pendulum connected to a vertical rod. Both the roll motion and pitch motion can be
converted into the yaw motion of the horizontal pendulum driving the shaft rotation of the
EMG. When the working frequency is 1 Hz and the load resistance is 110 Ω, the maximum
power is 4.79 mW [78]. Liang et al. designed a wave energy PTO based on a mechanical
motion rectifier that uses gears and one-way shafts to convert the wave excitation into
rotary motion and feed it to the EMG [79]. A PTO for mooring-less sensor buoys developed
by Joe et al. adopts a submerged body as a self-rectifying turbine so that the wave-induced
heave motion can be turned into the rotation of the motor. The converter could generate a
maximum power of 37.68 W with a mean rotational speed of 11.20 rpm [80]. Figure 4 and
Table 1 list some representative wave energy PTOs applicable for marine buoys.
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4 

 

  Figure 4. Electromagnetic generator (EMG)-based power take-off (PTO); (a) mechanical transmission
PTO [81], reproduced with permission from the authors; (b) permanent-magnet PTO [82], reproduced
with permission from the authors; (c) hydraulic flywheel PTO [83], reproduced with permission from
CC BY 4.0; (d) pendulum-based PTO [84], reproduced with permission from CC BY 4.0.

Table 1. Typical electromagnetic generator (EMG)-based power take-off (PTO).

Name Type Prototype
Main Shape

Maximum
Power References

An electromagnetic
wave energy collector Pendulum Conventional

rotating generator 200 W/m3 [76]

A vertical inertial
pendulum wave energy collector Pendulum Conventional

rotating generator 235 W [77]

A horizontal pendulum
wave energy collector Pendulum Conventional

rotating generator 4.79 mW [78]

An electromagnetic ocean-
wave-energy-harvesting device Pendulum Conventional

rotating generator 122 mW [85]

A low-cost micro-linear
generator to harvest energy Cylinder Linear generator 20 mW [86]

A wave power plant Cylinder Linear generator 12 kW [82]
L-10 wave energy conversion Cylinder Linear generator 5 kW [87]

Permanent magnet linear
generator wave energy buoy. Cylinder Linear generator 10 kW [88]

Land and sea trials of EMG-based wave energy PTO reveal that they have good (single
unit) power and output stability. However, the volume of EMG also brings disadvantages
such as a complex structure and high operation and maintenance costs. In sea conditions
with a mild wave input, its efficiency is not satisfactory [30,80].

3.2. TENG-Based PTO

The triboelectric effect is usually a negative effect considering that the induced electro-
static charges could cause dust explosions, ignition and dielectric breakdown. Based on
the coupling between contact electrification and electrostatic induction, TENG was first
invented in 2012 to effectively harvest miscellaneous mechanical energy that is extensively
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distributed but difficult to utilize [89]. The working cycle of TENG starts with no initial
charge. When two different materials (usually attached to two electrodes) undergo surface
contact, triboelectric charges on the two contacted surfaces are created due to their elec-
tronegativity difference. Consequently, a potential difference is built and varies as the two
contacted surfaces get separated, resulting in an electron flow from one electrode to the
other through the external circuit. As the two surfaces get closer again, the charges flow
back through the external circuit to compensate for the electric potential variation [90].

Wave energy is a high-density renewable energy easily accessible to marine buoys.
However, wave accompanies considerable randomness, as it is a vibration in physical
essence. Wave-induced motions should usually go through secondary transmission (and
sometimes control) before they can be fed to the conventional generator, making the whole
system incompatible or uneconomic to marine buoys (especially small-scale ones) [91]. In
this sense, TENG becomes a promising candidate for PTO onboarding small-scale marine
buoys, as it could directly convert the miscellaneous motions into an alternating current
within a smaller space and simpler structures [92].

Considering varying incident wave directions over time, TENG-based PTOs for wave
energy has also evolved into different configurations. At present, most of them work
in either vertical contact separation mode or lateral sliding mode. Some lateral sliding
mode TENGs are designed to have fixed moving tracks, which is beneficial for improving
the efficiency. On the other hand, the array design increases the degree of freedom (and
directions) from which the device collects wave energy. Zhang et al. designed a TENG of
a snake-like structure (a single layer of 6.4 × 5.1 × 2.54 cm) that could amplify the wave
excitation through springs. Under the forced motion of a linear motor at an amplitude of
0.08 m and an acceleration of 2 m/s2, the maximum power density reaches 3 W/m3 [92].
A published torus TENG unit is made up of a torus shell and a ball inside, and the small
ball moves circularly inside under the excitation of the simulated waves. At a frequency of
2 Hz and an inclination angle of 5◦, its maximum peak power density is 0.21 W/m2 [93].
Kim et al. designed a tubular floating buoy-based TENG with a fixed track to harvest wave
energy. Under mild wave conditions (wave frequency ~1.7 Hz, wave amplitude ~15 cm),
the output of a single unit is 30 V and 1.2 µA [94].

Other designs of the lateral sliding mode adopt flexible orbits for the motor of the
TENG, corresponding to a high-entropy wave input. Usually, the fixed orbit TENG could
only harvest wave energy from various directions by being arranged in adequate multi-
directional arrays. Therefore, TENGs with flexible tracks appear to be more appealing.
Ahmed et al. developed a duck-shaped TENG as a wave energy PTO. The wave drives the
small ball in the duck-shaped PTO to generate an irregular reciprocating motion, yielding a
maximum output power of 0.7 mw [95]. Cheng et al. developed a soft-contact spherical
TENG as a wave energy power source working in water, lighting multiple LEDs at a rated
power of 45 mW [96]. Xu et al. designed a tower-like TENG as a wave energy PTO that
consists of multiple layers of 3D-printed arc structures with PTFE balls in each layer. A
single unit yields an open circuit voltage of 105 V and short circuit current of 1.3 µA [97].

On the other hand, a TENG of the vertical contact separation mode could also be
an effective wave energy PTO. An early study on this was conducted by Jurado et al.,
in which, a vertical contact separation mode TENG was tested under various frequencies.
The study found that the TENG could produce a current of 1.22 mA and an energy con-
version efficiency of 22.4% [98]. Another TENG-based PTO array device adopts air-driven
membrane structures to form a spring-levitated oscillator. The oscillator utilized air as the
medium to transmit the wave-induced motions, yielding a maximum power density of
13.23 W/m3 [99]. An et al. developed a whirling-folded TENG consisting of a multilayered
TENG structure with an elastic 3D-printed PLA substrate. The whole unit is sealed in
a spherical shell, and can produce a peak power of 6.5 mW (12.4 W/m3). The air gap
between the TENG and the spherical shell could reduce the dielectric shielding effect from
the water [100].
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In general, TENG is in the phase of small-scale prototype design and laboratory
examination. Table 1 has listed the important characteristics of some typical TENG-based
PTOs as a development benchmark. The TENG yields a high voltage and better adaptability
to low frequency, making it a promising alternative for small-scale appliances (e.g., senses,
illumination). The desirable sizing, structure simplicity and lower costs are the obvious
advantages for TENG-based PTOs, yet engineering problems should be taken care of before
their practical use. These problems include load matching, system integration and output
stability. Figure 5 and Table 2 list some representative TENG-based PTOs applicable for
marine buoys.
 

5 

 

Figure 5. Triboelectric nanogenerator (TENG)-based PTO: (a) stackable fixed track TENG [101],
reproduced with permission from MPDI; (b) torus track TENG [93], reproduced with permission
from Elsevier; (c) stackable flexible track TENG [64], reproduced with permission from Elsevier;
(d) whirling-folded TENG [100], reproduced with permission from the author.

Table 2. Typical triboelectric nanogenerator (TENG)-based PTO.

Name Prototype
Main Shape Category Major Material Power

Density References

Torus-structured TENG Rings Fixed trajectory Cuba, FEP, Nylon,
Photopolymer 0.21 W/m2 [93]

Tower-like TENG Tower Unfixed trajectory PTFE, Nylon,
Metal electrode 1.03 W/m3 [97]

Open-book-like TENG Book Vertical contact
separation Al, PTFE 7.45 W/m3 [102]

Whirling-Folded TENG Cube Vertical contact
separation

FEP, PLA,
Kapton, Cu 12.4 W/m3 [100]

Stackable TENG Stackable Fixed trajectory PTFE, Al, PLA 49 W/m3 [101]

Hybridized EMG/TENG Rectangle Vertical contact
separation

FEP, Cu, Kapton,
Acrylic, Magnet

39.5 W/m3 +
58.1 W/m3 [103]

The concept of a “hybrid” PTO for wave energy aims to obtain higher power and
increase the robustness to the inputs. Current research on hybrid PTOs involves electro-
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magnetic, triboelectric and piezoelectric generators (PEG). In particular, the EMG/TENG
hybrid generator could combine the high voltage of TENGs with the high current of EMGs.
In an early study on the hybridized generator, the TENG part can deliver a peak power
of approximately 1.7 mW, whereas the EMG can deliver a peak power of approximately
2.5 mW [103]. Another study on a wave-driven multifunctional power module reveals that,
at 2 Hz, the voltage and current of the EMG reach 0.66 V and 2.14 mA, whereas the voltage
and current of the TENG module reach 142 V and 23.3 µA [104]. A heaving-mode hybrid
PTO combines a TENG (outputting 2600 V peak voltage and 78 µA peak current) with an
EMG (producing 2.5 V voltage and 30 mA peak current). The hybrid PTO could power a
commercial Bluetooth sensing system in wave basin tests [105].

4. Applications of Wave Energy Marine Buoy

The functional loads onboarding the marine buoys include navigation beacons, sensors,
data acquisitors and communication devices, etc. With the expansion of buoy functions, the
number of electronic equipment carried is gradually increasing, and the power consump-
tion of the buoy is also increasing. In order to ensure the normal operation of marine buoys,
solar battery systems need to mix other energy sources, such as wave energy, microbial
fuel and wind energy, in order to prolong the service span of the buoy system and improve
the charge/discharge efficiency [106]. According to the specific application requirements,
a variety of buoy systems have been developed. The representative ones include power
supply buoys, data buoys, navigational buoys, drifter buoys and aquaculture buoys [107].
Some of them are listed in Table 3.

Table 3. Typical applications of marine buoys.

Applications Name Prototype
Main Shape Year References

Power supply
buoys

OCEANTEC WEC AUV-shaped 2009 [108]
Wavebob Cylinder 2009 [109]

PB3 power buoy Cylinder 2016 [110]
OEbuoy Elliptical 2019 [111]

Ocean data
buoys

POSEIDON buoy Cylinder 2005 [112]
BOUSSOLE Tower-type 2013 [113]

A canoe-box GPS buoy Hemisphere 2015 [114]
Indigenized Indian drifting buoy Sphere 2017 [115]

Aquaculture
buoys

Finfish aquaculture feeding buoy Cylinder 2006 [116]
Echo-sounder buoys NA 2018 [117]

A low-cost compact autonomous buoy Cylinder 2018 [118]
Self-Powered Smart Fishing Net Tracker Cone 2022 [119]

With the progress of wave energy technologies, some attempts have evolved into
large, non-cylindrical platforms, while many still fall into the buoy scale. Large buoys
can output the electricity to the grid or to other marine structures instead of serving
themselves only. Wavebob is a two-body heaving buoys system developed for the shel-
tered waters of Ireland. The rated power of Wavebob reaches 1000 kW and is considered
highly adaptive to Mediterranean environments [109]. Ocean Power Technologies devel-
oped the first commercial WEC in the U.S., PowerBuoy, which acts as an uninterruptable
power supply (UPS) that constantly recharges itself by harvesting wave energy. Deployed
to supply devices on-board or underwater, the PowerBuoy3 incorporates a redesigned
PTO, a battery pack, a higher voltage power management and distribution system and a
novel auto-ballasting system [110]. Other power supply buoys include the OEbuoy [111],
AquaBuOY [120] and AWS [121]. Generally speaking, power supply buoys yield quite good
performances, yet their survivability and financial feasibility are subject to examination and
improvements [109]. This is why the power supply buoys are more inclined to step into
the segment market (e.g., PowerBuoy in the offshore applications) instead of the general
power grid, for now.
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In terms of offshore applications, wave energy buoys are very promising. In fact, the
earliest successful application of wave energy technologies is realized on a navigation buoy
(probably the most straightforward mission for marine buoys). Masuda’s navigation buoy
captures wave energy with an OWC and converts it to electricity through a turbine-drive
rotational generator. The buoys were commercialized in large numbers in Japan and the
U.S. as navigation equipment, and proved to be the first successful wave-powered devices
in real applications [44]. The first commercially manufactured wave energy device in China
also turned out to be the navigation buoy developed by Guangzhou Energy Research
Institute. Since the late 1980s, around 800 wave energy navigational buoy products have
been purchased by clients in China, Singapore and the U.K [122]. The Chinese wave energy
navigation buoys also adopt the combination of an OWC and turbine-drive rotational
generator, while the PTOs are becoming more powerful and more mature. On top of
this, the buoy-based PTOs developed by the Chinese Academy of Science have evolved
into multiple models (10 W, 100 W and kW). In 2020, a comprehensive wave energy data
buoy, “Hailing”, operated without any failure for one year in South China Sea. “Hailing”
implemented two 60 W wave energy pneumatic generators, one 30 W solar panel and a
complementary power management system [123]. This means that wave energy could
become the major renewable energy source for the mid-scale buoy.

As nerve nodes to the ocean, marine sensors perceive all sorts of valuable physical
quantities, such as conductivity (salinity), temperature, depth (pressure), wave, wind,
current (tide), radiation, turbidity, potential of hydrogen, dissolved oxygen and nitrogen
concentration [124]. In many occasions, the signals from the sensors need to be delivered
to data acquisitors, in which, they are turned into time series in certain steps to be stored,
transmitted or processed [125–127]. The data are used to predict the weather [128], hurri-
canes and cyclones [129] and monitor the environment [130]. The earlier representative
of the data buoy is the McLane moored profiler designed by Woods Hole Institute (with
an auto-lifting function) [131] and that designed by Norway SAIV AS with an electrical
winch [132]. The international Argo project has deployed over 3200 oceanographic data
buoys to increase sampling quantities and coverage in time and area [133]. Other data
buoys could be the buoys carrying GNSS receivers for geological monitoring [134] and the
drifting buoys with INSAT communication for the sea surface observations [115].

Compared to power supply buoys or navigation buoys, data/sensor buoys do not
require much volume. In fact, data/sensor buoys can be relatively small-scale. The
Seahorse buoy is an autonomous profiler designed by Bedford Institute of Canada that
consists of a buoy, jacketed wire, suspended weight and buoyant instrument package.
The Seahorse buoy utilizes wave energy to deliver the buoyant instrument downward
along the mooring line [135]. The successor of Seahorse, Wirewalker, follows a similar
wave-powered mechanism, but makes the device even simpler and cheaper [136]. The
U.S. Navy’s sonobuoy AN/SSQ-101 is an air-deployable active receiver. It is said that
AN/SSQ-101 is powered by converting wave energy through an integrated linear magnetic
generator [137]. Wave energy greatly increased the mission endurance. In turn, the unit
cost of AN/SSQ-101 is significantly reduced so that it can be extended to civilian purposes,
such as monitoring marine mammals, port security and seismic activity [138].

Due to the limitations with the battery of the buoy, the service availability of the
functional device on-boarding a buoy is largely determined by its standby time and its
temporal resolution [139]. The power requirement of the functional devices involved with
buoys ranges from 10−3 W to 102 W. Approximately a quarter of them (mostly small-scale,
single-function sensors) have a power consumption of less than 1 W. Over half of them have
a power consumption within 1–10 W (e.g., camera). Approximately 20% of the functional
devices require a power of 10–100 W (e.g., beacon light), whereas the rest (requiring more
than 100 W) are some larger-scale, comprehensive systems [140].

The wave energy technologies could be extended to other marine buoys. In fact, as
the world population and economy grow, the demand for marine protein has increased
rapidly in the past few decades. Aquaculture buoys are effective equipment used to
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increase aquaculture production and, at the same time, protect the environment. Echo-
sounder buoys could reduce the number and impact of fish-aggregating devices [117].
Low-cost aquaculture buoys could collect physical, chemical and biological data from
marine farms, which help to determine whether the area is suitable for activities such as
lobster breeding [13]. The finfish-breeding buoy could store different types of feed for
a long time [116], whereas the feed buoy could feed fish autonomously [141]. Generally
speaking, small-scale buoys such as aquaculture buoys follow a design philosophy of being
low-cost and robust. Therefore, sensor buoys and aquaculture buoys have become an
appropriate application scenario for the TENG-based PTO. A combination of single-body
OB and flexible track nanogenerator could power these buoys in a robust way [142,143].

Dynamic environments are usually the negative factors for solar panels, but, to a
certain extent, they can supply more energy to wave power systems [144]. Many studies
on self-powered buoys are attempting to shift the buoys’ power source from solar energy
to wave energy in order to reduce weight and to increase the power capacity [145]. For
instance, a position-tracking buoy powered by a wave-drive EMG-TENG hybrid generator
has been developed by Chandrasekhar et al. Sea trials revealed that the wave-powered
buoy realized GPS position tracking for itself a few kilometers away from shore [146].
Li et al. developed an EMG-based wave energy powered buoy that could automatically
charge a lithium battery and discharge external loads. In sea trials in the Yellow Sea, it
yielded a power density of 210 W/m3, which is adequate for supporting many low-power
sensors [84]. A modular wave-energy-powered buoy (developed by Vella et al.) went
through a series of model tests under both regular and random waves. The buoy generated
an average power output value of around 0.9 W under a mild sea state of a 0.2 m wave
height, meaning that it could become an observational buoy with a longer lifespan [147].
Chen et al. developed a wave-energy-powered buoy by integrating an EMG/TENG hybrid
generator. The buoy served as a self-powered sensing node and transmitted the sensing
data over a distance of 300 m in real sea trials [148].

It is found that the above wave energy marine buoys can be categorized into “wave
energy converter buoys” (such as Ocean Power Technologies’ PB3, AWS’ Archimedes Wave)
and “wave energy powered buoys” (such as Masuda’s navigation buoy, AN/SSQ-101
sonobuoy) depending on whether they can output electrical power to exterior payloads not
on-boarding the buoy. There is not a solid boundary for the two buoy types. In fact, PB3
can be scaled down (at a reduced cost) to supply power only to on-board payloads [56].
AWS’ Archimedes Wave can be scaled up to over 500 kW per unit, making it closer to a
power station [121].

5. Conclusions and Prospects

The study has reviewed the status of wave energy marine buoys, and provides an in-
sight into the development of both wave energy utilization and marine distributed systems.
The review is expanded to wave energy capturing, PTOs (generators) and applications of
marine buoys. It can be summarized from the study that:

• Concurrent marine buoys usually adopt solar photovoltaic systems as the in situ
supplemental power, followed by wind turbines. However, the power density, access
easiness and engineering factors make wave energy a more promising alternative
(if not a replacement) for marine buoys.

• Wave energy capturing has evolved into three major categories. Though the design
has not converged, some prototypes have entered full-scale sea trial stage, demon-
strating partial readiness for commercialization. As far as a marine buoy is concerned,
essentially, it prefers a smaller size, structure simplicity and axisymmetry for main
geometry. Therefore, the two-body point absorber, OWC spar type buoy and single
body point absorber appear to be more appropriate for marine buoys.

• Conventional rotational EMGs are the common PTOs for wave energy, and adopt
turbine/gears to transmit the wave-induced motion to motor rotations. Linear direct
generators are a developing technique used to directly utilize the significant relative
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heave motion. TENGs are a novel technique that directly converts miscellaneous
mechanical energy to electricity. Their adaptivity to a high-entropy input makes them
a promising alternative for small-scale buoys.

• The application of marine buoys has mainly extended to power supply buoys, navi-
gation buoys, data/sensor buoys and aquaculture buoys. Power supply buoys and
navigation buoys have partially implemented wave energy technologies with EMGs.
Sensor buoys and aquaculture buoys require a relatively smaller scale. Therefore,
wave energy technologies could become very effective in achieving self-power for
these buoys.

• It is determined by the functions of many small-scale buoys that they are largely
disposable. Wave energy technologies could extend such buoys’ service time so that
the unit cost of such buoys can be greatly reduced. In this sense, wave energy PTO
should be low-cost, simple and robust. A combination of a single OB and flexible track
TENG seems to be a promising technique.

• Wave energy buoys tend to differentiate into “wave energy converter buoys” and
“wave-energy-powered buoys”, which is indicated by the ratio of the PTO power to
the load power. The former specialize in outputting the converted electricity to the
clients, whereas the latter emphasize self-powering the applications on the buoy. Both
of them need to improve the power density and reduce the costs. The philosophy
of converter buoys is concerned more with hydrodynamic responses, whereas the
philosophy of wave-powered buoys is concerned more with the integration level.
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