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A B S T R A C T

The absorption and scattering properties of the water medium cause various types of distortion in underwater
images, which seriously affects the accuracy and effectiveness of subsequent processing. The application of
supervised learning algorithms in underwater image enhancement is limited by the difficulty of obtaining
a large number of underwater paired images in practical applications. As a solution, we propose an unsu-
pervised representation disentanglement based underwater image enhancement method (URD-UIE). URD-UIE
disentangles content information (e.g., texture, semantics) and style information (e.g., chromatic aberration,
blur, noise, and clarity) from underwater images and then employs the disentangled information to generate
the target distortion-free image. Our proposed method URD-UIE adopts an unsupervised cycle-consistent
adversarial translation architecture and combines multiple loss functions to impose specific constraints on
the output results of each module to ensure the structural consistency of underwater images before and
after enhancement. The experimental results demonstrate that the URD-UIE technique effectively enhances
the quality of underwater images when training with unpaired data, resulting in a significant improvement in
the performance of the standard model for underwater object detection and semantic segmentation.
1. Introduction

Various factors distort the quality of underwater images, notably
scattering effects that cause blurred details and low contrast, as well as
wavelength absorption, resulting in color deviation. Underwater image
enhancement (UIE) plays a vital role in perceiving the underwater
environment. It aims to remove or alter scene-specific style prop-
erties (e.g., chromatic aberration, blur, noise, etc.) while preserving
scene-invariant content properties (e.g., texture semantics). This pro-
cess improves the overall and local characteristics of acquired images,
enriches available information, and enhances the capability of image
interpretation and recognition.

The UIE methods can be either physical-model based or non-
physical model based, as summarized in Table 1. Physical-model based
methods (Peng and Cosman, 2017; Song et al., 2020; Zhou et al.,
2022c,a; Zhuang et al., 2022) build underwater imaging models
(McGlamery, 1980; Jaffe, 1990; Zhou et al., 2023c) based on the prin-
ciples of underwater image degradation and invert the original image
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before degradation by a mathematical process. This kind of methods
possesses limited image recovery capability due to model parameter
assumptions, i.e., the prior estimates of global atmospheric light and
medium transmission rates. Non-physical model based methods (Zhang
et al., 2021a; Zhuang et al., 2021; Zhou et al., 2022b; Li et al., 2022;
Zhou et al., 2023a,b,d) make pixel-wise contrast, color and sharp-
ness corrections to images based on the characteristics of underwater
images. However, the enhancement process might cause information
loss and introduce additional artifacts since imaging characteristics
and image contents are not taken into account. In addition, these two
categories of methods are not applicable to extreme underwater images
with multiple distortions, yielding weak robustness in image recovery
and superior difficulty in underwater video enhancement.

Recently, deep learning techniques provide an alternative for in-
telligent UIE, which are driven by either synthetic images (Sun et al.,
2019; Anwar et al., 2018) or real-world underwater images (Li et al.,
2019; Qi et al., 2021; Zhou et al., 2023b). Additionally, based on the
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Table 1
A brief description of the UIE studies.

Reference Framework Methodology Year

Deep learning Unsupervised GAN Cycle-consistent Representation
disentanglement

IBLA (Peng and Cosman, 2017)

Physical-model

– ✓ – – – 2017
SMBLO (Song et al., 2020) – ✓ – – – 2020
Ucolor (Li et al., 2021) ✓ – – – – 2021
HLRP (Zhuang et al., 2022) – ✓ – – – 2022
UWdepth (Wang et al., 2023b) ✓ ✓ – – – 2023

WaterGAN (Li et al., 2017)

Non-physical model

✓ ✓ ✓ – – 2017
UGAN (Fabbri et al., 2018) ✓ – ✓ ✓ – 2018
UWGAN (Li et al., 2018) ✓ – ✓ ✓ – 2018
CCBC (Zhang et al., 2021a) – ✓ – – – 2021
Bayesian (Zhuang et al., 2021) – ✓ – – – 2021
FUnIE-GAN (Islam et al., 2020) ✓ ✓ ✓ ✓ – 2021
ACCE-D (Li et al., 2022) – ✓ – – – 2022
TACL (Liu et al., 2022) ✓ ✓ ✓ ✓ – 2022
CVE-Net (Zhou et al., 2023d) ✓ ✓ – – – 2023
UMGAN (Sun et al., 2023) ✓ ✓ ✓ ✓ – 2023
URD-UIE ✓ ✓ ✓ ✓ ✓ 2023
learning strategy employed, these methods can be further categorized
into two distinct categories: supervised UIE and unsupervised UIE
methods. Supervised UIE methods (Anwar et al., 2018; Sun et al., 2019;
Li et al., 2019; Hu et al., 2021; Wang et al., 2023b) typically employ
various encoder–decoder network architectures and rely on paired
data, i.e., distortion-corrupted images and corresponding distortion-
free images. By utilizing this paired data, the supervised UIE models
are trained in a supervised fashion to enhance various image quality
indices such as contrast, sharpness, and color. The effectiveness of
these methods relies to some extent on the quality of the paired
datasets, which are commonly generated using a priori information.
However, the synthesized images can hardly reflect the real conditions
of underwater images, leading to limited generalizability in real-world
applications.

To alleviate the reliance on paired datasets for supervised UIE
methods, unsupervised UIE techniques have started incorporating gen-
erative adversarial network (GAN) (Goodfellow et al., 2014) in the
field of image transformation, such as WGAN-GP (Gulrajani et al.,
2017), DenseGAN (Guo et al., 2019), WaterGAN (Li et al., 2017),
UIE-sGAN (Ye et al., 2018), MCycleGAN (Lu et al., 2019), FUnIE-
GAN (Islam et al., 2020), UMGAN (Sun et al., 2023). While these
unsupervised UIE methods successfully address the issue of depen-
dence on paired datasets, they are primarily based on the fundamental
concept of cycle-consistent (Zhu et al., 2017) to reconstruct under-
water images with the aid of additional global similarity loss terms,
which will lead to the following two problems: (1) changing content
features during style transferring, which is contrary to the original
intention of UIE; (2) lacking style diversity for generated images (Lee
et al., 2020), which cannot reflect the color diversity of underwa-
ter objects. To tackle these aforementioned challenges, researchers
have proposed several image-to-image translation techniques that em-
ploy representation disentanglement learning (Lee et al., 2018; Huang
et al., 2018a; Liu et al., 2021). These methods decompose images
into domain-invariant content features and domain-specific style fea-
tures, followed by a collaborative decoding process of content and
style features through multi-scale feature fusion algorithms to generate
diverse-style outputs.

In this paper, taking inspiration from prior works (Islam et al., 2020;
Huang et al., 2018a), we propose an unsupervised representation disen-
tanglement based underwater image enhancement (URD-UIE) method.
The key features of our method are summarized as follows:

(1) We present URD-UIE, a disentangled representation framework
for underwater image enhancement that decomposes an un-
derwater image into two distinct components: content that is
invariant across domain and style-specific elements (e.g., chro-
matic aberration, blur, noise, and clarity), which are specific to
each domain.
2

(2) Our method proposes an unsupervised disentangled cycle trans-
lation architecture, which employs representation disentangle-
ment learning to encode content and style information of images
separately, and integrates the disentangled information to gen-
erate the target distortion-free image, ensuring consistency of
image structure before and after enhancement and style diversity
of recovered images.

(3) To accomplish complete representation disentanglement for bet-
ter UIE performance, we design multiple loss functions for mod-
ules of URD-UIE to ensure the reality and diversity of gener-
ated images by various combinations of disentangled style and
content features. This research has shown that it can drasti-
cally improve the performance of subsequent underwater tasks,
including object detection and semantic segmentation.

The remaining sections of this paper are structured as follows. In
Table 2, we summarize the notations frequently used throughout this
paper. Section 2 provides a concise overview of the existing research on
unsupervised learning for UIE and representation disentanglement. In
Section 3, we provide an outline of the URD-UIE framework, along with
its implementation details. The evaluation of our proposed method,
including a comparison to state-of-the-art (SOTA) methods and an
ablation study, is presented in Section 4. Finally, Section 5 summarizes
the conclusions and discussions derived from our study.

2. Related work

2.1. Unsupervised UIE

In recent years, deep learning techniques have made significant
advancements in image processing, contributing to various applica-
tions (Zhang et al., 2021b; Wang et al., 2022, 2023a; Zhang et al.,
2023b,a). However, when it comes to data-driven image enhancement
in real-world underwater environments, where distortion-corrupted im-
ages and corresponding distortion-free images are scarce, most existing
models (Anwar et al., 2018; Sun et al., 2019; Li et al., 2019; Hu
et al., 2021; Wang et al., 2023b) become ineffective due to the lack
of a large amount of paired image data. To address the challenge
of limited paired datasets, unsupervised learning-based methods have
been proposed for UIE, leveraging the concept of cycle-consistency,
such as CycleGAN (Zhu et al., 2017) and its variants (Li et al., 2017;
Ye et al., 2018; Lu et al., 2019; Islam et al., 2020; Li et al., 2021).

Despite the progress made by unsupervised UIE methods, there are
several drawbacks that need to be addressed. Firstly, The effectiveness
of image enhancement models is intrinsically linked to the quality

of the training datasets, specifically the presence of distortion-free
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Table 2
List of notations.

Notation Description

𝑥1 Distortion-corrupted image
𝑥2 Distortion-free image
𝑥1→2 Synthetic image in the distortion-free space
𝑥2→1 Synthetic image in the distortion-corrupted space
�̂� Cross-reconstructed image of 𝑥
�̃� Self-reconstructed image of 𝑥
𝑐 Disentangled content features of 𝑥
𝑠 Disentangled style features of 𝑥
𝑐1 Disentangled content features of 𝑥1→2
𝑐2 Disentangled content features of 𝑥2→1
�̂�1 Disentangled style features of 𝑥2→1
�̂�2 Disentangled style features of 𝑥1→2
1 Distortion-corrupted domain imageset
2 Distortion-free domain imageset
 Domain-invariant content space
1 Distortion-corrupted domain-specific style space
2 Distortion-free domain-specific style space
𝐸𝑐 Content encoder
𝐸𝑠 Style encoder
𝐺 Generator
𝐷 Discriminator
𝑎𝑑𝑣 Adversarial loss
𝑐𝑦𝑐 Cycle consistency loss
𝑟𝑒𝑐 Self-reconstruction loss
𝑠𝑡𝑦 Style consistency loss
𝑐𝑜𝑛𝑡 Content consistency loss
𝜆 Loss weights

images with stylistic diversity (Anwar and Li, 2020), as insufficient
diversity in the training data can restrict the generalization capability.
Secondly, traditional unsupervised UIE methods (Li et al., 2017; Islam
et al., 2020) often introduce content feature changes during the style
transferring process, which deviates from the original intention of UIE.
To partially overcome these limitations, HybrUR (Yan et al., 2021)
and UUIE (Shen et al., 2023) recently proposed a joint architecture for
underwater visual restoration, which learns from unpaired images, thus
alleviating the dependency on paired data to some extent. However,
the excessive complexity of the model affects real-time computational
performance, making it less suitable for practical applications.

Motivated by the aforementioned challenges, we take inspiration
from image-to-image translation (Lee et al., 2018, 2020; Huang et al.,
2018a) and propose to approach the underwater image enhancement
problem through image style transformation modeling. This alterna-
tive perspective aims to improve the underwater visual perception of
UIE while mitigating some of the limitations associated with previous
approaches.

2.2. Representation disentanglement learning

The objective of representation disentanglement learning is to de-
velop models that can effectively capture the various factors of data
variation (Ding et al., 2020). While some works (Cheung et al., 2014;
Makhzani et al., 2015; Mathieu et al., 2016) utilize labeled data to
separate class-independent and class-related components, recent studies
have explored unsupervised training methods such as InfoGAN (Chen
et al., 2016) and 𝛽-VAE (Higgins et al., 2016). These methods achieve
isentanglement by maximizing the cross-information between poten-
ial variables and data variation, enabling representation disentangle-
ent without the need for explicit supervision. However, these methods

ack control over the model learning process, thereby limiting their
bility to generate desired factors.

To address this limitation, ss-InfoGAN (Spurr et al., 2017) intro-
uces tags during training to achieve better control over the learned
ata-generating elements, while also allowing for the learning of un-
agged or unknown factors. Another approach to representation disen-
3

anglement involves embedding images into distinct latent spaces. For
example, MUNIT (Huang et al., 2018a) decomposes the latent space
into separate content and style spaces, while DRIT (Lee et al., 2018)
and DRIT++ (Lee et al., 2020) decompose the potential space into a
shared content space and a unique attribute space for the source/target
domain.

Although several methods (Chen and Pei, 2022; LIU et al., 2022)
have recently utilized the framework of representation disentanglement
learning and achieved promising results, their impact on subsequent
underwater image processing tasks has not been thoroughly examined.
Drawing inspiration from prior work on disentangled representation
learning (Pang et al., 2021), we aim to disentangle underwater images
into content and style features within corresponding latent spaces to fa-
cilitate better image enhancement. Furthermore, we integrate UIE with
underwater vision perception enhancement to validate the performance
improvements in practical underwater tasks, including object detection
and semantic segmentation, etc.

3. Unsupervised representation disentanglement based underwa-
ter image enhancement (URD-UIE)

We consider the UIE problem as an image-to-image translation
task between the distortion-corrupted and distortion-free domains and
propose an unsupervised representation disentanglement-based method
for UIE, referred to as URD-UIE, as illustrated in Fig. 1. To tackle the
challenge of unpaired datasets dependencies, we introduce a cross-cycle
consistency loss to facilitate unsupervised representation disentangle-
ment. Specifically, our method begins by taking a pair of non-aligned
underwater images and performing a cross-domain translation map-
ping, which resulted in intermediate outputs obtained by swapping
the style features from both images. Subsequently, we reconstruct the
original input image pair by reapplying the cross-domain translation
mapping. The purpose of this step is to ensure that the reconstructed
images maintain consistency with the original ones. To achieve this
goal, we employ two encoders to respectively encode each image
into content features in a domain-invariant content space and style
codes in a domain-specific style space. Furthermore, we construct a
generator that utilizes the encoded content features and style codes
to produce enhanced images. By incorporating these components and
leveraging the cross-cycle consistency loss, we achieve the objective of
enhancing underwater images while preserving their original content.
In the subsequent section, we will present a comprehensive overview
of each component and the learning strategies employed.

3.1. Content-style representation disentanglement

Let 1 and 2 represent the domains corresponding to distortion-
corrupted and distortion-free underwater images, respectively. Our
method aims to achieve content-style representation disentanglement
between these two domains by utilizing unpaired training images. It
is worth emphasizing that even high-quality underwater images may
include certain levels of stylistic information in practical scenarios. To
address this, we assume that each underwater image can be expressed
as a nonlinear combination of content components (e.g., texture, se-
mantics) and style components (e.g., chromatic aberration, blur, noise,
and clarity). For two unpaired images (𝑥1 ∈ 1, 𝑥2 ∈ 2), we em-
ploy sequential representation disentanglement translation to achieve
cross-reconstruction mappings 𝑥1 → �̂�1 and 𝑥2 → �̂�2. Our proposed
method effectively disentangles the latent spaces of 𝑥1 and 𝑥2 into two
distinct spaces: a shared domain-invariant content space denoted by
, and a domain-specific style space denoted by 𝑖 for each domain
𝑖, as illustrated in Fig. 1(b). Specifically, let us take the mappings
𝑥1 → �̂�1 as an example. Firstly, we encode 𝑥1 into two latent spaces:
the domain-specific style space 1 and the domain-invariant content
space , yielding the content representation 𝑐1 and the disentangled
style representation 𝑠1, respectively. Using these representations, we

construct a generator 𝐺1 that generates an intermediate image �̂�1 in
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Fig. 1. Overview of URD-UIE. (a) Auto-encoder architecture. (b) Distortion-corrupted and distortion-free domain representation disentanglement. (c) The URD-UIE framework and
loss function architecture.
the distortion-corrupted domain 1. The self-reconstruction translation
mapping 𝑥1 → �̂�1 can be summarized as follows: {𝑥1 ∈ 1} → {𝑠1 ∈
1, 𝑐1 ∈ } → {�̂�1 ∈ 1}. Similarly, we perform mappings 𝑥2 → �̂�2 using
content-style representation disentanglement, i.e., {𝑥2 ∈ 2} → {𝑠2 ∈
2, 𝑐2 ∈ } → {�̂�2 ∈ 2}. These various combinations of encoding–
decoding operations facilitate multiple forms of image style conversion.
Moreover, additional constraints can be easily incorporated to enhance
the consistency of desired texture and semantic structure information,
ensuring the improvement in quality of complex distortion-corrupted
underwater images while preserving complete detail information.

3.2. Auto-encoder architecture

In our URD-UIE method, we propose a novel auto-encoder archi-
tecture specifically designed to generate distortion-free images. The
auto-encoder illustrated in Fig. 1(a) consists of three key components:
(1) a content encoder 𝐸𝑐 and a style encoder 𝐸𝑠, responsible for
extracting the content and style information from an input underwater
image and mapping it to the domain-invariant latent space  and the
domain-specific style space , respectively; (2) a generator 𝐺, which
utilizes the extracted features to generate an image in the distortion-
free domain; and (3) a discriminator 𝐷, responsible for discerning
between real and generated images within each domain. Next, we will
describe the details for each component:
4

(1) Content encoder. The gray section depicted in Fig. 1(a) com-
prises three strided convolutional layers responsible for downsampling
the distortion-corrupted image and four residual blocks (He et al.,
2016) to facilitate subsequent processing and generation of content
features. All the convolutional layers are activated by ReLU (Glorot
et al., 2011), the padding type is reflect (Paszke et al., 2019), and
followed by Instance Normalization (IN) (Ulyanov et al., 2017).

(2) Style encoder. The blue section of Fig. 1(a) consists of a
strided convolutional layer and three residual blocks (He et al., 2016)
for downsampling the distortion-free image. All convolutional lay-
ers utilize ReLU activation (Glorot et al., 2011) and employ reflect
padding (Paszke et al., 2019). The style code is derived through a global
average pooling (GAP) layer followed by a fully connected (FC) layer. It
is important to note that the IN layer is excluded from the style encoder,
as it eliminates the mean and variance of the original features, which
contain essential style information (Huang and Belongie, 2017).

(3) Generator. As shown in the green part of in Fig. 1(a), the
enhanced image is generated by processing the content feature through
four residual blocks and two deconvolution layers, followed by one
convolutional layer. The activation functions used in these layers are
Tanh (Karlik and Olgac, 2011) for the last convolutional layer and
ReLU (Glorot et al., 2011) for the rest, with all padding types set
to zero (Paszke et al., 2019). To incorporate style codes into the
image generation process, we integrate adaptive instance normalization
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(AdaIN) (Huang and Belongie, 2017) layers into our image generation
process by equipping our residual blocks with parameters that are
dynamically generated by a multi-layer perceptron (MLP).

(4) Discriminator. As depicted in the orange segment of Fig. 1(a),
e utilize a multi-scale discriminator (Wang et al., 2018) for real/fake

lassification of each domain, and guide the generators to produce
utputs that exhibit both exceptionally realistic details and precise
lobal structures.

.3. The URD-UIE framework

Fig. 1(c) presents an overview of the URD-UIE network framework,
hich comprises two disentangled cross-domain translation (distortion-

orrupted and distortion-free domain cycles), two self-reconstruction
ranslations, and two adversarial constraints. To achieve the disen-
angled cross-domain translation, the framework employs two domain
ranslation mappings, i.e. 𝑥1 → 𝑥1→2 → �̂�1 and 𝑥2 → 𝑥2→1 → �̂�2,

for distortion-corrupted and distortion-free domain cycles, respectively.
Next, two encoders are employed to disentangle the content and style
features of an underwater image, and a generator is utilized to recon-
struct the target-domain image by leveraging these extracted features,
thus achieving the domain translation mapping. More specifically, the
mapping 𝑥1 → 𝑥1→2 → �̂�1 is realized by content encoder 𝐸𝑐

1 , the
style encoder 𝐸𝑠

1, and the generator 𝐺1, whereas the mapping 𝑥2 →
𝑥2→1 → �̂�2 is realized by the content encoder 𝐸𝑐

2 , the style encoder
𝐸𝑠
2 and the generator 𝐺2. With any two unpaired images, i.e., the

underwater distortion-free image 𝑥1 and the distortion-corrupted image
𝑥2 as inputs, the process of learning to reconstruct the images �̂�1 and
̂2 by the encoders and the generators, respectively, is represented as
follows:
{

𝑐1, 𝑠1
}

=
{

𝐸𝑐
1
(

𝑥1
)

, 𝐸𝑠
1
(

𝑥1
)}

,
{

𝑐2, 𝑠2
}

=
{

𝐸𝑐
2
(

𝑥2
)

, 𝐸𝑠
2
(

𝑥2
)}

, (1)

where 𝑐1 and 𝑠1 represent the disentangled content and style features
of 𝑥1, 𝑐2 and 𝑠2 depict the disentangled content and style features of
𝑥2, respectively. Based on this, we utilize the generator 𝐺1 to perform a
cross-fusion of 𝑐1 and 𝑠2 in the latent space to 𝑥1→2 in the distortion-free
image space, whereas the distortion-corrupted image 𝑥2→1 is generated
by 𝑐2 and 𝑠1:

𝑥1→2 = 𝐺1
(

𝑐1, 𝑠2
)

, 𝑥2→1 = 𝐺2
(

𝑐2, 𝑠1
)

. (2)

The translated images 𝑥1→2 and 𝑥2→1 are constrained by 𝑥2 and 𝑥1,
respectively, through discriminators 𝐷2 and 𝐷1. These discriminators
aim to distinguish between real and generated images, and encourage
the model to generate images that are as consistent as possible to the
real ones. To effectively train the model using unpaired datasets, we
apply the cross-domain translation mapping again to reconstruct the
original input image pair. By doing this, we can utilize the cross-cycle
consistency loss to enforce consistency between the input images 𝑥
and their reconstructed counterparts �̂�. The procedure for extracting
content and style features is as follows:
{

𝑐1, �̂�1
}

=
{

𝐸𝑐
1(𝑥1→2), 𝐸𝑠

2(𝑥2→1)
}

,
{

𝑐2, �̂�2
}

=
{

𝐸𝑐
2(𝑥2→1), 𝐸𝑠

1(𝑥1→2)
}

. (3)

Similarly, the process of content and style feature cross-fusion re-
mains consistent with Eq. (2), which is represented as follows:

�̂�1 = 𝐺1
(

𝑐1, �̂�1
)

, �̂�2 = 𝐺2
(

𝑐2, �̂�2
)

, (4)

where �̂�1 and �̂�2 represent the cross-reconstructed image of 𝑥1 and 𝑥2,
respectively. In addition, we impose constraints on the forward transla-
tion mappings through self-reconstruction translations, as illustrated in
the right part of Fig. 1(c), to ensure the preservation of image quality
when no alteration is expected. To be more specific, we conduct a self-
reconstruction process using the disentangled content and style features
extracted from 𝑥1 and 𝑥2, denoted as follows:

�̃�1 = 𝐺1
(

𝑐1, 𝑠1
)

, �̃�2 = 𝐺2
(

𝑐2, 𝑠2
)

, (5)

where �̃�1 and �̃�2 are the self-reconstructed distortion-free and distortion-
5

corrupted image, respectively.
3.4. Loss function

Taking into account the visual perception effect and the preserva-
tion of detailed features in the generated image, we have devised five
loss functions to achieve the desired output. The relationship between
each loss function is illustrated in Fig. 1(c).

3.4.1. Adversarial loss
To enhance the realism of the generated images, we integrate the

adversarial loss function (Isola et al., 2017) into both domains to
achieve superior outcomes. For the distortion-free domain, the adver-
sarial loss 𝑥1

𝑎𝑑𝑣 was defined as:

𝑥1
𝑎𝑑𝑣 = E

[

log
(

1 −𝐷1
(

𝑥2→1
))]

+ E
[

log𝐷1
(

𝑥1
)]

, (6)

where 𝐷1 represents a discriminator that aims to distinguish between
the translated images 𝑥2→1 and the real images in 1. Our objective
is to minimize the 𝑥1

𝑎𝑑𝑣 to make the enhanced image as similar as
possible to the real sample in the distortion-free domain. Similarly, for
the distortion-corrupted image domain, the adversarial loss 𝑥2

𝑎𝑑𝑣 was
defined as:

𝑥2
𝑎𝑑𝑣 = E

[

log
(

1 −𝐷2
(

𝑥1→2
))]

+ E
[

log𝐷2
(

𝑥2
)]

, (7)

where 𝐷2 is a discriminator which attempts to distinguish between the
translated images 𝑥1→2 and real images in 2. Our goal is to minimize
the 𝑥2

𝑎𝑑𝑣 to make the degraded image as similar as possible to the real
sample in distortion-corrupted domain.

3.4.2. Cycle consistency loss
Due to the inability of the unpaired dataset to provide supervised

signals, the generated enhanced images may not adequately retain the
structural information of the original ones. To effectively tackle this
issue, we introduce a cycle consistency loss (Zhu et al., 2017) to enforce
a high degree of similarity between the structures of the images before
and after enhancement, which is represented as follows:

𝑐𝑦𝑐 = ‖

‖

𝑥1 − �̂�1‖‖1 + ‖

‖

𝑥2 − �̂�2‖‖1. (8)

3.4.3. Self-reconstruction loss
To ensure the preservation of information and prevent the introduc-

tion of new distortions during the encoding and decoding process, it
is essential for the UIE model to possess self-reconstruction capability.
This capability allows the model to reconstruct the original image using
the content and style information extracted by the encoder. To achieve
this, we introduce the utilization of self-reconstruction loss 𝑟𝑒𝑐 , which
is denoted as follows:

𝑟𝑒𝑐 = ‖

‖

𝑥1 − �̃�1‖‖1 + ‖

‖

𝑥2 − �̃�2‖‖1. (9)

3.4.4. Style consistency loss
To ensure that the cross-reconstruction image aligns with the stylis-

tic characteristics of the original image, we introduce a style consis-
tency loss denoted as 𝑠𝑡𝑦, which is represented as follows:

𝑠𝑡𝑦 = ‖

‖

𝑠1 − �̂�1‖‖1 + ‖

‖

𝑠2 − �̂�2‖‖1. (10)

3.4.5. Content consistency loss
To guarantee that the cross-reconstruction image preserves the con-

tent information of the original image, we incorporate a content con-
sistency loss denoted as 𝑐𝑜𝑛𝑡, which is expressed as follows:

𝑐𝑜𝑛𝑡 = ‖

‖

𝑐1 − 𝑐1‖‖1 + ‖

‖

𝑐2 − 𝑐2‖‖1. (11)

3.4.6. Total loss
All modules are optimized with total loss function :

 = 𝑎𝑑𝑣 + 𝜆𝑐𝑦𝑐𝑐𝑦𝑐 + 𝜆𝑟𝑒𝑐𝑟𝑒𝑐 + 𝜆𝑠𝑡𝑦𝑠𝑡𝑦 + 𝜆𝑐𝑜𝑛𝑡𝑐𝑜𝑛𝑡, (12)

where 𝑎𝑑𝑣 = 𝑥1
𝑎𝑑𝑣 + 𝑥2

𝑎𝑑𝑣, 𝜆𝑐𝑦𝑐 , 𝜆𝑟𝑒𝑐 , 𝜆𝑠𝑡𝑦 and 𝜆𝑐𝑜𝑛𝑡 are the loss weights

used for controlling the contributions of the terms in Eq. (12).
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Table 3
The parameters of experimental configuration.

Parameter Value

𝜆𝑐𝑦𝑐 10.0
𝜆𝑟𝑒𝑐 10.0
𝜆𝑠𝑡𝑦 1.0
𝜆𝑐𝑜𝑛𝑡 1.0
Batch size 64
Cropped image size 256 × 256
CPU Intel Xeon Silver 4210
GPU NVIDIA RTX A6000 (48 GB RAM)
Framework PyTorch 1.12.0
System Ubuntu 20.04
CUDA & cuDNN CUDA 11.6 and cuDNN 8.3.3

4. Experimental results and analysis

To validate the effectiveness of the URD-UIE method, we con-
ducted experimental comparisons with traditional and learning-based
methods, and analyzed the results from both subjective and objective
perspectives.

4.1. Dataset and training details

In this paper, the unpaired dataset from EUVP (Islam et al., 2020) is
chosen as the training set, containing a total of 3195 low quality images
and 3140 high quality images, which are separated by volunteers based
on attributes such as color, contrast and sharpness, and this unpaired
dataset supports the modeling of human preferences for underwater
image quality perception. To evaluate the proposed method, a test-
ing set of 500 severely distortion-corrupted underwater images was
obtained from online sources. The majority of these images exhibit
characteristics of overblue or overgreen characteristics, providing a
challenging evaluation scenario.

During the training process, URD-UIE was implemented using Py-
Torch (Paszke et al., 2019). Both training and evaluation were con-
ducted on a machine equipped with a CPU (Intel Xeon Silver 4210)
and three GPUs (NVIDIA RTX A6000 48 GB). The Adam (Kingma and
Ba, 2014) optimizer was employed with a learning rate of 1 × 10−4.
n the process of training, we used 𝜆𝑐𝑦𝑐 = 10, 𝜆𝑟𝑒𝑐 = 10, 𝜆𝑠𝑡𝑦 = 1 and
𝑐𝑜𝑛𝑡 = 1 for the corresponding losses, 𝐸, 𝐺 and 𝐷 are optimized in an
lternating manner. The specific training parameters of the URD-UIE
ethod are shown in Table 3.

The image dimensions are cropped to a uniform size of 256 × 256,
nd the maximum number of training iterations is 100 000. In addition,
o guarantee the fairness of experimental comparisons, all unsupervised
ethods used the same unpaired dataset and configurations for training

nd testing, while the optimal model provided by the source code was
sed for testing of the supervised methods.

.2. Qualitative analysis

To qualitatively analyze the performance of URD-UIE method, we
elected images with different severities of chromatic aberration distor-
ion from the testing set and then compared them with IBLA (Peng and
osman, 2017), ULAP (Song et al., 2018), RGHS (Huang et al., 2018b),
MBLO (Song et al., 2020), UGAN (Fabbri et al., 2018), CycleGAN (Zhu
t al., 2017), UWGAN (Li et al., 2018) and FUNIE-GAN (Islam et al.,
020), Ucolor (Li et al., 2021), TACL (Liu et al., 2022), where the liter-
tures (Peng and Cosman, 2017; Song et al., 2020; Huang et al., 2018b;
ong et al., 2018) are the traditional method and the literatures (Islam
t al., 2020; Zhu et al., 2017; Li et al., 2021; Fabbri et al., 2018; Li
t al., 2018; Liu et al., 2022) are the learning-based methods.

The qualitative comparison of enhanced results for authentic un-
erwater images using different methods are presented in Fig. 2. The
nalysis leads to several key observations. Firstly, IBLA lacks a color
6

a

orrection function and fails to correct blue–green distortion, render-
ng it ineffective in addressing the issue of color bias in underwater
mages. SMBLO exhibits significant enhancement effects, primarily at-
ributed to its complex restoration mechanism. However, it tends to
xcessively increase contrast and brightness, resulting in overly bright
isuals or even overexposure, as seen in images 4 and 6. ULAP, while
roviding enhancement effects that fall between the aforementioned
ethods, struggles to effectively recover the original colors in severely

hromatic distortion-corrupted images. Among the traditional compar-
son methods, RGHS demonstrates the most favorable enhancement
ffect. Nonetheless, it proves suboptimal for recovering images with
artial distortion, as evident in images 1 and 7. In contrast, learning-
ased methods yield superior visual enhancements. Both UGAN and
UnIE-GAN exhibit color overcompensation issues in local regions, as
bserved in image 3, and are not adept at handling severe chromatic
istortion, as seen in images 1 and 5. Additionally, UGAN tends to
versaturate bright objects in the scene, as depicted in image 2, while
UnIE-GAN employs a lightweight model that significantly improves
rocessing speed but struggles with correcting color styles in unpaired
raining models. CycleGAN, due to its reliance on a relatively single
oss function constraint, falls short in recovering chromatic aberrations
ffectively. Regarding background enhancement in underwater im-
ges, UWGAN outperforms the aforementioned methods by successfully
estoring the background features associated with dewatering charac-
eristics. However, some local objects still exhibit color distortions,
uch as the human statue in image 3 and the turtle’s back in image 5,
hich display varying degrees of greenish coloration. Benefitting from

he advantages of self-supervised learning, Ucolor and TACL showcase
he most impressive enhancement effects among all the comparison
ethods. However, some of the enhanced images display unnatural

olors, as seen in image 2 of Ucolor, and slight oversaturation, as
vident in images 3 and 5 of TACL. In comparison to all the traditional
nd learning-based methods mentioned above, our method surpasses
he physical-based methods in visual enhancement without using scene
epth or a priori water body information, outperforms existing unsu-
ervised models and rivals supervised methods in the case of training
ithout paired datasets.

To demonstrate the generalizability and robustness of the URD-UIE
ethod, we conducted experiments on synthetic images. From Fig. 3,

ll input images are artificially generated with significant color distor-
ion, which challenges the enhancement performance of the model. In
his case, the traditional methods i.e. IBLA, SMBLO, ULAP and RGHS
lmost struggled to effectively restore the color aberration. In contrast,
artial learning-based methods such as UGAN, FUnIE-GAN, Ucolor,
nd TACL showcased their superiority in terms of distortion recovery.
mong all the compared methods, Ucolor and TACL emerged as the

op performers. However, it should be noted that some of the enhanced
mages failed to fully recover the original colors, and the enhancement
ffect of FUnIE-GAN exhibited over-compensation in color, resulting
n less realistic outputs (e.g., image 1, 2, and 3 displaying varying
egrees of reddishness). Similarly, UGAN showed insensitivity toward
ynthetic underwater images, with the generated images exhibiting a
ore uniform style. On the other hand, CycleGAN produced results

hat were largely consistent with authentic underwater images, but
he recovery of chromatic aberration was not prominent. After careful
omparison, our method demonstrated a more realistic enhancement
ffect for synthetic images, with richer details and color information,
nd excellent performance in terms of visual sensory effects.

.3. Quantitative analysis

To quantitatively evaluate and analyze the performance of URD-
IE, we employed generalized no-referenced underwater image quality
valuation metrics: Underwater Image Quality Measure (UIQM) (Yang

nd Sowmya, 2015), Underwater Color Image Quality Evaluation
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Fig. 2. Qualitative comparison of UIE for authentic underwater images using different methods.
Fig. 3. Qualitative comparison of UIE for synthetic underwater images using different methods.
(UCIQE) (Panetta et al., 2015), Underwater Image Colorfulness Mea-
sure (UICM), Underwater Image Sharpness Measure (UISM), and Un-
derwater Image Contrast Measure (UIConM). UIQM, which is based
on the HSV model, takes into account colorfulness, sharpness, and
contrast. UCIQE utilizes the contrast, chroma, and saturation of the
CIELab color space, as human perception is strongly influenced by
chroma variance in degraded underwater images. UICM quantifies the
colorfulness attribute, while UISM measures sharpness by examining
grayscale edges. UISM stands for the sharpness measurement via the
gray-scale edges, and the contrast is measured via UIConM by applying
7

Logarithmic AME by Entropy (logAMEE) (Panetta et al., 2010). Higher
values for each evaluation metric indicate superior visual quality of
the image. Quantitative comparisons on UIE of authentic and synthetic
underwater images are presented in Tables 4 and 5, respectively.

From Table 4, it is evident that URD-UIE outperforms all other
methods in most metrics, except for SMBLO in UICM. This superiority
can be attributed to the additional enhancement provided by SMBLO,
which optimizes the gain factor for white balance color correction,
thereby further improving the color properties of UICM. The compara-
tive results of the quantitative analysis for synthetic underwater images,
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Table 4
Quantitative comparison of UIE on authentic underwater images.

Method UICM↑ UISM↑ UIConM↑ UIQM↑ UCIQE↑

Original image 3.1494 5.0460 0.2046 2.3105 4.0049
IBLA (Peng and Cosman, 2017) 5.1639 4.9656 0.1268 2.0654 5.0761
SMBLO (Song et al., 2020) 9.0997 5.4342 0.1696 2.4677 5.7153
ULAP (Song et al., 2018) 5.2072 5.3459 0.1959 2.4259 5.1606
RGHS (Huang et al., 2018b) 6.8919 5.9577 0.2386 2.8066 5.8338

UGAN (Fabbri et al., 2018) 4.5587 6.8883 0.2282 2.9785 4.9390
CycleGAN (Zhu et al., 2017) 4.4869 5.5061 0.2750 2.7357 4.8816
UWGAN (Li et al., 2018) 4.4339 6.5132 0.2921 3.0926 5.2140
FUNIE-GAN (Islam et al., 2020) 4.8336 6.7341 0.2425 2.9919 5.5505
Ucolor (Li et al., 2021) 5.5892 7.0390 0.2942 3.2595 4.3341
TACL (Liu et al., 2022) 7.4388 7.2061 0.2894 3.3705 5.4433
URD-UIE 7.4684 7.4451 0.2963 3.4470 6.5943
Table 5
Quantitative comparison of UIE on synthetic underwater images.

Method UICM↑ UISM↑ UIConM↑ UIQM↑ UCIQE↑

Original image 3.5520 6.7553 0.2178 2.8736 3.7441
IBLA (Peng and Cosman, 2017) 4.4442 5.1289 0.1686 2.2426 4.5644
SMBLO (Song et al., 2020) 5.6213 3.5913 0.1473 1.7458 4.9824
ULAP (Song et al., 2018) 4.1366 4.5891 0.1679 2.0723 4.3071
RGHS (Huang et al., 2018b) 4.3669 6.2063 0.1833 2.6113 4.5288

UGAN (Fabbri et al., 2018) 2.0707 6.9960 0.2856 3.4106 2.4744
CycleGAN (Zhu et al., 2017) 3.3540 6.4171 0.2653 2.9383 4.1682
FUNIE-GAN (Islam et al., 2020) 4.5406 7.4654 0.2694 3.3553 4.9329
Ucolor (Li et al., 2021) 3.4604 7.5886 0.2540 3.4114 3.5341
TACL (Liu et al., 2022) 3.8589 7.5844 0.2617 3.4179 3.3670
URD-UIE 4.7153 7.6115 0.2697 3.4376 5.0752
as presented in Table 5, consistently support the findings observed in
authentic underwater images. Based on the comprehensive quantitative
analysis above, it is proved that URD-UIE effectively restores the actual
colors, enhances contrast and sharpness, and preserves the inherent
texture structure features.

Besides the qualitative analysis of authentic and synthetic images,
we also measured the computational efficiency of URD-UIE by calcu-
lating the Frames Per Second (FPS), which calculates the number of
enhanced images per second. For a batch images with size 256 × 256,
the FPS value of URD-UIE was approximately 13, which satisfies the
real-time requirements for underwater video enhancement (UVE). From
experiments conducted on UVE, URD-UIE achieved significant results in
chromatic aberration correction, deblurring and contrast improvement.
Our real-time underwater enhancement video is available at https://
youtu.be/VktJ8PQA188.

4.4. User study

We conducted a user study with 20 volunteers who are familiar
with underwater images. The volunteers were presented with different
sets of images (one for each enhancement model) and asked to rank
their top three selections. We received a total of 600 responses. Fig. 4
summarizes the rank-1, rank-2, and rank-3 times of the top 5 models,
which indicates that the users preferred the images enhanced by URD-
UIE, TACL, Ucolor, UWGAN, and FUnIE-GAN compared to the other
models. Our user study results demonstrate that our method is superior
in terms of subjective visual enhancement effects, which is further
corroborated by our qualitative and quantitative analyses.

4.5. Improved visual perception

As depicted in Fig. 5, we conducted additional experiments to
provide a quantitative explanation for the effectiveness of URD-UIE
enhanced images in underwater visual perception. To increase the
difficulty of the experiment, we utilized object detection and semantic
segmentation data of underwater farmed products (i.e., holothurian,
echinus, starfish and scallops) with severe distortion for validation.
8

Fig. 4. Rank-n times plot for the top five models.

Fig. 6 presents a comparative analysis of underwater object detection,
from which we can see that the enhanced image exhibits a greater num-
ber of selected bounding boxes and achieves higher detection accuracy.
Furthermore, the comparison of underwater semantic segmentation,
illustrated in Fig. 7, clearly demonstrates the superior segmentation
performance of the enhanced image.

As shown in Tables 6 and 7, we have summarized the quantitative
results of underwater object detection using different methods, i.e,
YOLOX (Ge et al., 2021), Centernet (Zhou et al., 2019), and Fast
R-CNN (Girshick, 2015). Additionally, we have presented the results
of underwater semantic segmentation using DeepLabV3 (Chen et al.,
2017), PSPNet (Zhao et al., 2017), and U-net (Ronneberger et al.,
2015). From Tables 6 and 7, we can observe significant improvements
in the average precision (AP) for object detection and the intersection
over union (IoU) for semantic segmentation across various underwa-
ter object categories, i.e., holothurian, echinus, starfish, and scallop.
Specifically, the mean average precision (mAP) for object detection in
enhanced images has increased by 55.1%, 125.0% and 139.1% using
YOLOX (Ge et al., 2021), Centernet (Zhou et al., 2019) and Faster
R-CNN (Ren et al., 2015) respectively. Furthermore, the mean intersec-
tion over union (mIOU) for semantic segmentation in enhanced images

https://youtu.be/VktJ8PQA188
https://youtu.be/VktJ8PQA188
https://youtu.be/VktJ8PQA188
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Fig. 5. Underwater image enhancement effect for object detection and semantic segmentation.
Fig. 6. Comparison of underwater object detection for underwater images without and with enhancement.
Table 6
Quantitative comparison of URD-UIE effect for object detection.

Category YOLOX (Ge et al., 2021) Centernet (Zhou et al., 2019) Faster R-CNN (Ren et al., 2015)

Original Enhanced Improvement Original Enhanced Improvement Original Enhanced Improvement

Holothurian 0.3377 0.7177 112.6% 0.1627 0.7067 334.4% 0.1456 0.6759 364.2%
Echinus 0.7359 0.8588 16.7% 0.2381 0.8928 274.9% 0.2289 0.8653 278.0%
Starfish 0.6423 0.8369 30.3% 0.3861 0.8905 130.6% 0.3504 0.8421 140.3%
Scallop 0.3126 0.7331 134.5% 0.6622 0.7708 16.4% 0.5575 0.6824 22.4%
mAP 0.5071 0.7866 55.1% 0.3623 0.8152 125.0% 0.3206 0.7664 139.1%
has improved by 10.8%, 10.8% and 5.8% using DeepLabV3 (Chen et al.,
2017), PSPNet (Zhao et al., 2017) and U-net (Ronneberger et al., 2015)
respectively. These results clearly indicate that URD-UIE plays a crucial
role in enhancing underwater visual perception performance.

To further quantitatively evaluate and analyze the enhancement
performance of URD-UIE for subsequent underwater image processing
tasks, we conducted a comparative analysis between our proposed
method URD-UIE and the best traditional and learning-based methods
(i.e., RGHS and TACL) used in previous qualitative and quantitative
evaluations. The quantitative comparison of various object detection
and semantic segmentation algorithms using enhanced images obtained
from different UIE methods is presented in Tables 8 and 9, respec-
tively. These tables clearly illustrate that URD-UIE outperforms other
9

methods in terms of mAP for object detection and mIoU for semantic
segmentation, indicating its superiority for improved underwater visual
perception, thus highlighting its potential for improving underwater
image processing tasks.

4.6. Ablation experiments

To further investigate the impact of different loss functions on
the performance of URD-UIE, we conducted comprehensive ablation
experiments. In order to ensure a fair analysis of the effect of each
component, consistent data and training iterations were maintained
across all experiments. Fig. 8 illustrates the qualitative analysis of the
ablation experiments. Specifically, M1 represents the model trained
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Fig. 7. Comparison of underwater semantic segmentation of underwater images without and with enhancement.

Fig. 8. Qualitative comparison of UIE using different losses.
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Table 7
Quantitative comparison of URD-UIE effect for semantic segmentation.

Category DeepLabV3 (Chen et al., 2017) PSPNet (Zhao et al., 2017) U-net (Ronneberger et al., 2015)

Original Enhanced Improvement Original Enhanced Improvement Original Enhanced Improvement

Background 0.9742 0.9797 0.6% 0.9856 0.9867 0.1% 0.9886 0.9893 0.1%
Holothurian 0.4783 0.5039 5.4% 0.2587 0.3407 31.7% 0.3759 0.4114 9.4%
Echinus 0.6709 0.6821 1.7% 0.5119 0.5992 17.1% 0.6436 0.6677 3.7%
Starfish 0.5137 0.6192 20.5% 0.4184 0.4651 11.2% 0.5976 0.6369 6.6%
Scallop 0.4649 0.6732 44.8% 0.3011 0.3508 16.5% 0.3971 0.4725 19.0%
mIOU 0.6204 0.6876 10.8% 0.4952 0.5485 10.8% 0.6005 0.6356 5.8%
Table 8
Quantitative comparison of object detection algorithms using enhanced images for different UIE methods.

Category YOLOX (Ge et al., 2021) Centernet (Zhou et al., 2019) Faster R-CNN (Ren et al., 2015)

RGHS TACL URD-UIE RGHS TACL URD-UIE RGHS TACL URD-UIE

Holothurian 0.6846 0.6731 0.7177 0.6496 0.6294 0.7067 0.6254 0.6102 0.6759
Echinus 0.8205 0.8385 0.8588 0.8739 0.8583 0.8928 0.8079 0.8289 0.8653
Starfish 0.8257 0.8176 0.8369 0.8288 0.8186 0.8905 0.8128 0.7895 0.8421
Scallop 0.7158 0.7093 0.7331 0.7053 0.6979 0.7708 0.6039 0.6241 0.6824
mAP 0.7617 0.7596 0.7866 0.7644 0.7511 0.8152 0.7125 0.7132 0.7664
Table 9
Quantitative comparison of semantic segmentation algorithms using enhanced images for different UIE methods.

Category DeepLabV3 (Chen et al., 2017) PSPNet (Zhao et al., 2017) U-net (Ronneberger et al., 2015)

RGHS TACL URD-UIE RGHS TACL URD-UIE RGHS TACL URD-UIE

Background 0.9768 0.9756 0.9797 0.9843 0.9831 0.9867 0.9859 0.9878 0.9893
Holothurian 0.5446 0.3938 0.5039 0.2568 0.2759 0.3407 0.4203 0.4324 0.4114
Echinus 0.6578 0.6376 0.6821 0.4719 0.4622 0.5992 0.6310 0.6328 0.6677
Starfish 0.4437 0.5101 0.6192 0.4381 0.4090 0.4651 0.5896 0.5841 0.6369
Scallop 0.5532 0.5075 0.6732 0.2897 0.2735 0.3508 0.4247 0.4203 0.4725
mIOU 0.6352 0.6049 0.6876 0.4882 0.4807 0.5485 0.6103 0.6115 0.6356
Table 10
Quantitative comparison of UIE using different losses.

Method UICM↑ UISM↑ UIConM↑ UIQM↑ UCIQE↑

M1 (𝑎𝑑𝑣 only) 7.1518 6.7757 0.2492 3.0990 5.1204
M2 (M1 with 𝑐𝑦𝑐 ) 6.2135 6.2551 0.2691 3.3277 5.5503
M3 (M2 with 𝑐𝑜𝑛𝑡) 6.6370 6.8340 0.2732 3.1522 5.9856
M4 (M3 with 𝑠𝑡𝑦 ) 6.8642 7.3723 0.2928 3.4530 6.2030
M5 (M4 with 𝑟𝑒𝑐 ) 7.4684 7.4451 0.2963 3.4470 6.5943

solely with 𝑎𝑑𝑣, while M2 corresponds to the model trained with both
𝑎𝑑𝑣 and 𝑐𝑦𝑐 . Furthermore, M3 and M4 denote the models trained by

additionally incorporating 𝑐𝑜𝑛𝑡 and 𝑠𝑡𝑦 into M2, respectively. Building
pon these variants, M5 is the model trained with all loss functions.

As depicted in Fig. 8, it is evident that the generated image does not
erfectly align with the structure of original image, leading to a signif-
cant loss of detailed information when employing M1 with only 𝑎𝑑𝑣.

In contrast, the results generated by M2 exhibit more comprehensive
preservation of structural information, primarily attributed to the con-
tribution of 𝑐𝑦𝑐 in retaining fine structural details in the images. While
M3 accurately retains the vast majority of the structural information
of original image due to the content consistency constraints, there are
certain areas where the colors deviate, resulting in a mismatch with re-
ality. By incorporating the style consistency loss, the images generated
by M4 demonstrate improved color balance. Finally, the M5 model, in-
corporating the self-reconstruction mechanism, achieves optimal results
in terms of texture details and subjective human visual perception. This
model effectively enhances image sharpness and contrast, while also
providing more natural and realistic color reproduction. To validate our
qualitative observations in Fig. 8, we present the quantitative results
of the ablation experiment in Table 10, which are consistent with our
findings.
11
5. Conclusion and discussion

In this paper, we propose an unsupervised underwater image en-
hancement method based on representation disentanglement (URD-
UIE). Our study makes the following contributions: Firstly, we analyze
the content and style information of different distortion-corrupted un-
derwater images and define a variety of combined content and style in-
formation constraints applicable to multiple types of images, and obtain
an unsupervised content-style representation disentanglement learning
mechanism by combining image cyclic consistency transformation, so
as to achieve the complete separation of image content and style
information. Then, we design a network structure with content-style
dual encoding and multi-scale fusion decoding, and incorporate multi-
ple specific loss functions to establish a general quality enhancement
model for underwater images. Qualitative and quantitative experi-
ments demonstrate that the URD-UIE method can effectively correct the
image distortion and improve the image quality for different distortion-
corrupted underwater images, especially for these with the distortion
of severe chromatic aberrations. The performance improvements of
object detection and semantic segmentation using enhanced images
demonstrate that URD-UIE can contribute to subsequent underwater
image processings. However, it is important to acknowledge certain
limitations in our work. Specifically, our method generalizes mixed
distortion types of underwater images to a single style code, which
restricts its ability to enhance images with different distortion types.
In future research, we will focus on addressing this limitation and
exploring methods to improve the quality of underwater images with
diverse distortion types.
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