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Abstract: Vibration is a common phenomenon in various fields which can not only indicate the 

working condition of the installation, but also serve as an energy source if it is efficiently harvested. 

In this work, a robust silicone rubber strip-based triboelectric nanogenerator (SRS-TENG) for vibra-

tion energy harvesting and multi-functional self-powered sensing is proposed and systematically 

investigated. The SRS-TENG consists of a silicone rubber strip and two aluminum electrode layers 

supported by polylactic acid (PLA), and acts as a sustainable power source and vibration frequency, 

amplitude and acceleration sensor as well. The soft contact between the aluminum electrode and 

silicone rubber strip makes it robust and stable even after 14 days. It can be applied in ranges of 

vibration frequencies from 5 to 90 Hz, and amplitudes from 0.5 to 9 mm, which shows it has ad-

vantages in broadband vibration. Additionally, it can achieve lower startup limits due to its soft 

structure and being able to work in multi-mode. The output power density of the SRS-TENG can 

reach 94.95 W/m3, matching a resistance of 250 MΩ, and it can light up more than 100 LEDs and 

power a commercial temperature sensor after charging capacitors. In addition, the vibration ampli-

tude can be successfully detected and displayed on a human–machine interface. Moreover, the fre-

quency beyond a specific limit can be distinguished by the SRS-TENG as well. Therefore, the SRS-

TENG can be utilized as an in situ power source for distributed sensor nodes and a multifunctional 

self-powered vibration sensor in many scenarios. 
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1. Introduction 

With the development in autonomous/smart technologies and distributed, intercon-

nected and self-powering sensor networks for Internet of Things (IoT) applications [1,2], 

a huge amount of distribution sensors are essential for the intellectualization of many dif-

ferent fields [3]. Meanwhile, vibration is a very common form of mechanical energy in 

many machines, vehicles, and structures which carries relevant information about their 

performance but which is otherwise irreversibly wasted without any further use [4]. Most 

distributed sensors should be powered through cables or by batteries. However, vast sen-

sor nodes lead to complex arrangements and high cost in system design and construction 

because of large amounts of power and signal cables [5]. Moreover, battery-powered ap-

proaches also face serious challenges due to short battery life cycles and the pollution 
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problems caused by battery aftertreatment [6,7]. Therefore, if vibration energy can be ef-

fectively collected and converted into electrical power, it will be beneficial for the in situ 

energy supply of massive distributed sensors [8]. It would be of great benefit if the vibra-

tion sensing information could also be obtained as well as simple energy harvesting. In 

brief, vibration energy harvesting and self-powered vibration sensing are prospective 

choices in the era of IoT in many application scenarios [9]. 

Furthermore, with triboelectric nanogenerators (TENGs), it is possible to make this 

vision a reality. TENGs, invented by Professor Zhong Lin Wang in 2012, work based on a 

combination of electrification effects and electrostatic induction between triboelectric ma-

terials [10–12]. TENGs are considered promising for wide applications such as self-pow-

ered sensors [13], nano/micropower [10], high-voltage energy [14], and energy-harvesting 

systems [5,15,16]. Recently, vibration energy harvesting and sensing based on TENGs 

have attracted great interest due to the advantages of high efficiency, low cost, compact 

size [17], etc. Generally, the reported vibration energy harvesters based on TENGs mainly 

include spring-assisted or similar resonant-type vibration harvesters, and non-resonant 

ones. The harmonic-type TENG can produce maximum electrical output within resonant 

frequencies [18,19]. However, the application of the harmonic-type TENG is limited in 

wide vibration ranges because the energy performance significantly decreases when the 

vibration is out of its sharp resonant frequency. Therefore, some multifrequency reso-

nance-type TENGs [20] and non-resonant bouncing-ball-type TENGs [21] are reported for 

enhancing energy-harvesting performance in wide vibration ranges. However, there are 

still problems demanding prompt solutions, for example, high output performance is 

achieved only around several resonant frequencies, and the bouncing-ball-type model can 

only work under contact-separation mode. Therefore, the design of a TENG with broad 

frequency response and multi-mode capability should be highly considered. 

In this work, a robust silicone rubber strip-based triboelectric nanogenerator (SRS-

TENG) for broadband vibration energy harvesting and multi-functional vibration sensing 

is proposed. The SRS-TENG in a rectangular prism is composed of two conductive alumi-

num electrodes supported by PLA and a non-conductive silicone rubber strip with its 

ends fixed at the half-height of the rectangular prism. The SRS-TENG was tested under 

two different conditions. Firstly, it was tested under varying amplitudes with fixed vibra-

tion frequency. The SRS-TENG effectively detected vibration amplitudes from 0.5 to 9 mm 

under the vibration frequency of 20 Hz. Secondly, it was tested under varying frequencies 

with fixed vibration amplitudes. With a vibration amplitude of 1 mm, the SRS-TENG was 

capable of detecting a vibration frequency from 5 to 90 Hz. Moreover, it was able to light 

up more than 100 LEDs and power a temperature sensor successfully after charging a 

capacitor when working at a vibration frequency of 30 Hz. Therefore, the SRS-TENG has 

potential applications in self-powered vibration sensing and vibration energy harvesting 

with broadband vibrations. 

2. Results and Discussion 

2.1. Structure and Working Mechanism of the SRS-TENG 

As shown in Figure 1a, the SRS-TENG can be used as a universal vibration energy 

harvesting and vibration sensing device in a variety of applications including metro, ve-

hicle, ship, bridge, hydroelectric power plant, building, etc. The schematic diagram of the 

SRS-TENG is illustrated in Figure 1b. It consists of two conductive aluminum electrodes 

supported by the PLA and a silicone rubber strip in the rectangular prism. The two ends 

of the silicone rubber strip are fixed at the mid-height of the rectangular prism so that the 

silicone rubber strip is hung between the two aluminum electrodes. The air gap between 

the aluminum electrodes and silicone rubber strip is to facilitate the contact and separation 

between them. 
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Figure 1. Application scenario, structure and working principle of SRS-TENG. (a) SRS-TENG appli-

cation in various scenarios, such as (i) metro, (ii) vehicle, (iii) ship, (iv) bridge, (v) hydroelectric 

power plant, and (vi) building. (b) The structure and (c) (i–iv) working mechanism of the SRS-

TENG; (d) (i–iii) the potential distribution of two parallel electrodes at different states calculated by 

COMSOL Multiphysics (COMSOL Inc., Stockholm, Sweden). 

The detailed working mechanism of SRS-TENG is demonstrated in Figure 1c. In the 

initial state, which is shown in Figure 1(ci), the silicone rubber strip makes contacts with 

the bottom electrode due to its elastic deformation caused by the external vibration exci-

tation. Due to their different electronegativities, the mechanical contact between the sili-

cone rubber strip and the aluminum electrodes leads to electron-enhanced and electron-

depleted regions on adjacent surfaces and therefore ensuing electric fields. Then, with the 

upward oscillation of the silicone rubber strip, the electrons move from the top electrode 

to the bottom one because of the potential difference between them, which is illustrated 

in Figure 1(cii). When the silicone rubber strip makes contact with the top layer, a new 

equilibrium is achieved, as shown in Figure 1(ciii). Then, the silicone rubber begins to 

move downwards, which makes the electrons move from the bottom electrode to the top 

one. Thus, a current in Figure 1(civ) contrary to that in Figure 1(cii) is generated. As a 

result, the vibration energy is effectively converted to electrical energy. 

Furthermore, the simulation result of the electrostatic field distribution of the SRS-

TENG by COMSOL Multiphysics is depicted in Figure 1d, which matches well with the 

working mechanism. Besides the contact-separation (C-S) mode, the SRS-TENG can work 

in non-contact (N-C) mode as well. The working mechanism of the N-C mode is shown in 

Figure S1 in the Supplementary Materials. The output performance of both modes was 

examined, and the results are discussed in the following section. 

2.2. Theoretical Analysis 

Based on the theory of the contact-mode freestanding TENG [11,22–24], the equation 

for SRS-TENG is elaborated as: 

0

0 0

2 ( )1 2
ag

ag

OC

h
d h

V Q V Q
C S

 

 

−+
= − + = − + , (1) 

where VOC is the open-circuit voltage, Q is the transferred charge, C is the capacitance, d0 

is the thickness of the silicone rubber strip, hag is the height of the air gap between the 

electrode and the strip, ε0 is the dielectric constant in vacuum, S is the size of the electrode, 
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ω is the separation distance between the electrode and the strip along the y-coordinate 

due to elastic deformation, and σ is the charge density. 

As depicted in Figures 1c and S1, the SRS-TENG can work in both C-S mode and N-

C mode. In order to represent the working condition of the SRS-TENG, the deformation 

status of the silicone rubber strip is defined, where the distance of separation from the 

origin of the coordinate is expressed as sag (s), as shown in Figure 2a. The sag (s) of the 

silicone rubber strip can also be stated as the length from the deepest point of the full 

expansion strip to the origin of the coordinate. In addition, parameters such as the air gap 

hag of the SRS-TENG unit, the width w and thickness d0 of the strip are demonstrated in 

the 3D structure and cross-section of the SRS-TENG displayed in Figure 2a,b. 

 

Figure 2. Analysis of the movement of silicone rubber strip. (a) The coordinate system of the SRS-

TENG shown in the 3D structure; (b) parameters of the SRS-TENG; (c) silicone rubber strip taken 

by high-speed camera and (d) its corresponding simulation result by COMSOL Multiphysics at vi-

bration frequencies of (i) 10 Hz, (ii) 30 Hz and (iii) 50 Hz, respectively. 

The SRS-TENG works based on the alternative movement of the silicone rubber strip 

due to the triggering of the vibration source [25,26]. Therefore, the sag (s) or the length (l), 

width (w), thickness (d0) of the strip, and the height of the rectangular prism are the key 

parameters that influence the oscillation behavior of the strip, as well as the electrical out-

put of the SRS-TENG. 

On basis of the theoretical analysis, the movements of the silicone rubber strip under 

different external vibrations were investigated by applying a high-speed camera 

(FATCAM Mini UX50, Photron, Tokyo, Japan), as shown in Figure 2c, and simulated 

through COMSOL Multiphysics (COMSOL Inc., Stockholm, Sweden), as illustrated in Fig-

ure 2d. At a constant amplitude of 1 mm with different vibration frequencies, the strip 

behaves in different vibration forms as the vibration frequency increases. Figure 2(ci–ciii) 

show the strip wave status at vibration frequencies of 10, 30 and 50 Hz, respectively. The 

more detailed moving status of the strip caused by different external vibrations is shown 

in Video S1 in the Supplementary Materials. As shown in Figure 2(di–diii), the simulation 

results agree well with the movement of the strip in the SRS-TENG. It was observed that 

the strip wave amplitude decreases and the number of cycles increases with the increasing 

vibration frequency because the frequency of a wave is related to its wavelength expressed 

by the equation fw = vw/λw, where vw and λw represent the wave speed and wavelength, 

respectively [27]. 
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2.3. Working Performance of SRS-TENG 

A testing system, which is shown in Figure S2 in the Supplementary Materials, was 

built to test the working performance of the SRS-TENG. The SRS-TENG was mounted on 

an electrodynamic shaker (JZK-20, SINOCERA, Suzhou, China), which served as the ex-

ternal vibration source. The shaker, which is driven by an external amplifier (YE5872A, 

SINOCERA, Suzhou, China) that receives vibration signal from a function generator 

(YE1311, SINOCERA, Suzhou, China), can generate various forms of vibration with ad-

justable frequency and amplitude. The maximum acceleration of the device is monitored 

by a commercial accelerometer (KS96.100, MMF, Radebeul, Germany) and analyzed by a 

dynamic signal analyzer. The relationship is governed by the harmonic motion equation 

which can be derived from calculus theory [21,23], 

2 2

sin( )

(2 )

b

m

y A t

a A A f

 

 

= +

= =
, (2) 

where am, f, and A are the maximum vibration acceleration, vibration frequency and vi-

bration amplitude, respectively. 

In order to study the impacts of different working modes and parameters on the out-

put performance of the SRS-TENG, the SRS-TENGs with single and double electrode(s), 

with or without rubber strip modification, different rubber strip widths and thicknesses, 

and different air gaps, are systematically studied. As shown in Figure 3a, the output cur-

rent of SRS-TENG with a double electrode mode had a 50% improvement and showed a 

more stable performance compared to that with a single electrode. The output voltage and 

transferred charge comparison between the single and double electrode(s) modes of the 

SRS-TENG are illustrated in Figure S3 in the Supplementary Materials. The output per-

formance of the SRS-TENG with a silicone rubber strip surface modified by sandpaper 

indicated that the output current, voltage and transferred charge increased by 50%, 40% 

and 20%, respectively, compared to that with the original strip, as demonstrated in Fig-

ures 3b and S4 in the Supplementary Materials. Referring to [28,29], the contact electrifi-

cation of the TENG is realized by the friction or contact nanomaterials in the field of the 

electron scope. Additionally, the microstructure after the surface modification of the strip 

is shown in Figure 3c. Therefore, the performance improvement after surface modification 

was due to the increase in the nanostructure contact area between the rubber strip and the 

electrode, contributing to a higher output performance of the SRS-TENG [30–32]. 

 

Figure 3. The impacts of different working modes and parameters on the output performance of the 

SRS-TENG. Current performance comparison between the SRS-TENGs (a) working at double elec-

trode and single electrode modes, and (b) with or without surface treatment of the strip. (c) Surface 
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microstructure of silicone rubber polished by sandpaper. (d) Current performance comparison 

among the SRS-TENGs with different widths of 22, 30, and 42 mm, (e) different thicknesses of 0.48, 

0.86, and 1.2 mm, and (f) different air gaps of 5, 10 and 15 mm. 

Figures 3d and S5 in the Supplementary Materials show that the output performance 

of the SRS-TENG increases as the width of the strip increases under the frequency of 20 

Hz and varying amplitudes. This is also because the contact area between the nanostruc-

tures of the strip and electrode increases, thereby leading to high output performance. In 

addition, strips with various thicknesses are realized by adjusting the acceleration, speed 

and time of the spin-coater, as shown in Table S1 in the Supplementary Materials. Three 

strips with a thickness of 0.48, 0.86 and 1.2 mm were fabricated and investigated. 

As depicted in Figures 3e and S6 in the Supplementary Materials, the output perfor-

mance increased in the wake of increasing the thickness of the strip. The reason for that is 

the thicker the strip, the heavier the strip, which results in a larger contact force between 

the strip and the electrode. Moreover, the SRS-TENGs with an air gap of 5, 10 and 15 mm 

were fabricated to study the effect of the hag on the output performance of the SRS-TENG. 

Figures 3f and S7 in the Supplementary Materials show the maximum output of the SRS-

TENG with an air gap of 10 mm compared to the air gaps of 5 and 15 mm. The reason for 

this trend is that small air gap limits the separation distance between the strip and the 

electrode, and an excessive air gap causes ineffective contact. Hence, the performance of 

the SRS-TENG degrades in both cases. 

Therefore, an SRS-TENG with strip surface modification, thickness of 1.2 mm, width 

of 42 mm, air gap of 10 mm, and double electrodes, was determined to carry out the output 

performance test. 

According to the theoretical analysis, both vibration amplitude and frequency had a 

vital impact on the working performance of SRS-TENG. So, the output performance of the 

SRS-TENG under the condition of variable amplitudes of 0.5–9 mm and frequencies of 5–

90 Hz were comprehensively carried out. However, it should be noted that the electrody-

namic shaker will not work at excessive acceleration, which may result in the failure of 

the shaker according to the manufacturer’s recommendation; therefore, vibration at a 

large amplitude at high frequency could not be carried out. 

As illustrated in Figure 4a, the short-circuit current increased from 0.1 to 3.1 µA as 

the vibration amplitude increased from 0.5 to 9 mm under the fixed vibration frequency 

of 20 Hz, which is a typical representative within the scope of various fixed frequencies 

from 5–90 Hz. However, as exhibited in Figure 4b,c, the relationship of open-circuit volt-

age and transferred charge varying with amplitude at different fixed frequencies did not 

show a positive linear correlation. 
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Figure 4. Electrical output performance of the SRS-TENG. (a) Short-circuit current with different 

vibration amplitudes under a vibration frequency of 20 Hz. (b) Open-circuit voltage and (c) trans-

ferred charge with different vibration amplitudes under different fixed frequencies. (d) Short-circuit 

current with different vibration frequencies under a vibration amplitude of 1 mm. (e) Open-circuit 

voltage and (f) transferred charge with different vibration frequencies under different fixed ampli-

tudes. (g) Linear relationship between the short-circuit current and vibration frequency at a fixed 

vibration amplitude of 1 mm. (h) Linear relationship between the short-circuit current and different 

vibration amplitude at a fixed vibration frequency of 20 Hz. (i) Short-circuit current under a vibra-

tion acceleration of 20 m/s2. 

Moreover, the output performance under different vibration frequencies, which 

changed from 5 to 90 Hz, was also explored. As depicted in Figure 4d, the short-circuit 

current increased from 0.1 to 0.8 μA with the vibration frequency from 5 to 90 Hz and 

amplitude fixed at 1 mm. The variation tendency of open-circuit voltage and transferred 

charge along with the frequency at different amplitudes are demonstrated in Figure 4e,f. 

The relationship between the voltage or transferred charge and amplitude was also irreg-

ular. 

Figure 4g shows the linear relationship between the short-circuit current and the vi-

bration frequency at a fixed amplitude of 1 mm. Furthermore, there was also a linear re-

lationship between the short-circuit current and the vibration amplitude from 0.5 to 9 mm 

under a vibration frequency of 20 Hz, which can be seen in Figure 4h. Thus, this shows 

the potential of the SRS-TENG to be a vibration frequency and amplitude sensor in the 

frequency range of 5–90 Hz and amplitude range of 0.5–9 mm. 

Moreover, the output performance of the SRS-TENG under fixed acceleration was 

also studied, which is shown in Figure 4i. It can be seen that the short-circuit current 

reached 0.65 μA at 25 Hz and then decreased with the fixed acceleration of 20 m/s2. This 
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is because 25 Hz is the resonant frequency at which the silicone rubber strip has the best 

contact with the upper and lower electrodes under this acceleration. 

Through the analysis of the above test results, the voltage and transferred charge 

were not found to show a linear relationship with amplitude or frequency. However, after 

the fast Fourier transform (FFT) of the voltage and transferred charge, the FFT results 

showed linearity with different vibration frequencies, as demonstrated in Figure 5a,b. The 

FFT result of the vibration frequency of 33 Hz under the vibration amplitude of 1 mm is 

illustrated in Figure 5c. 

 

Figure 5. Vibration sensing performance of the SRS-TENG. (a) Linear relationship between FFT of 

voltage signal and vibration frequency with the vibration amplitude of 1 mm. (b) Linear relationship 

between FFT of transferred charge signal and vibration frequency with the vibration amplitude of 

1 mm. (c) The FFT result of voltage signal with the vibration frequency of 20 Hz and amplitude of 1 

mm. (d) 3D relationship between the FFT result of voltage signal and vibration frequency with dif-

ferent fixed amplitude. (e) Relationship between short-circuit current, vibration frequency and ac-

celeration with the fixed amplitude of 1 mm. (f) Relationship between short-circuit current, vibra-

tion amplitude and acceleration with the fixed frequency of 20 Hz. 

The relationship between the FFT results of the voltage signal and frequency under 

different amplitudes is shown in Figure 5d, which provides another way to detect the 

vibration frequency. Figure 5e,f show the 3D relationship between the output current, vi-

bration frequency (or amplitude) and maximum acceleration at an amplitude of 1 mm (or 

frequency of 20 Hz). The results show that the output current increased with increasing 

vibration acceleration and vibration frequency or amplitude, so the SRS-TENG has the 

potential to be used as a multifunctional vibration sensor. From the above observation, 

the SRS-TENG can be used to accurately detect vibration frequencies from 5 to 90 Hz, 

vibration amplitudes of 0.5–9 mm, and accelerations from 0.5 to 319.8 m/s2. The amplitude 

display system, vibration monitoring and alarm system are demonstrated with a detailed 

discussion in the next chapter. 
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2.4. Demonstration 

Figure 6 demonstrates the performance of the SRS-TENG to be an energy harvester 

and a self-powered vibration sensing and alarm system. Based on the test results, the en-

ergy-harvesting performance demonstration is indicated in Figure 6a–c. The output per-

formance of the SRS-TENG was determined by mounting the SRS-TENG on an electrody-

namic shaker at the working frequency of 30 Hz and an amplitude of 2 mm. The maximum 

power density 94.95 W/m3 was achieved at the load resistance of 250 MΩ, as illustrated in 

Figure 6a. Capacitors were charged by the SRS-TENG through the rectifying circuit shown 

in the inset in Figure 6b. The circuit was adopted to change the alternating current to a 

direct current, which can be used to power the sensor and is useful for energy harvesting 

and self-powered sensing based on the SRS-TENG. Different capacitor charging perfor-

mances are exhibited in Figure 6b; the 33, 47 and 100 µF capacitors could be charged to 5 

V in 90, 130 and 315 s, respectively. Moreover, as depicted in Figure 6c and Video S2 in 

the Supplementary Materials, the model is capable of powering a commercial temperature 

sensor after charging the capacitor in 60 s, which demonstrates the practical application 

of the SRS-TENG as a power source. Furthermore, the SRS-TENG could also light up more 

than 100 LEDs, as shown in Video S3 in the Supplementary Materials, exhibiting its excel-

lent performance in vibration energy harvesting. In addition, owing to the unique design 

of the SRS-TENG, the soft contact between the strip and electrode means that the SRS-

TENG qualifies for the features of robustness and durability depicted in Figure 6d. The 

output performance was almost the same as the original state after 14 days. 

 

Figure 6. The demonstration of the SRS-TENG as a vibration energy harvester and self-powered 

vibration sensing and alarm system. (a) Current and output power density of the SRS-TENG under 

a vibration frequency of 30 Hz and an amplitude of 2 mm. (b) Voltage curves of different capacitors 

charged by SRS-TENG. (c) Voltage curve of the capacitor charged by the SRS-TENG powering a 

temperature sensor. (d) Robustness performance of the SRS-TENG after 14 days test. (e) The logic 

diagram of SRS-TENG for vibration amplitude and frequency sensing. Demonstration of (f) vibra-

tion amplitude sensing and (g) vibration frequency alarm system. (h) The SRS-TENG mounted on 

a commercial air compressor as a vibration sensor and (i) the FFT result of the voltage signal of the 

SRS-TENG. 



Nanomaterials 2022, 12, 1248 10 of 13 
 

 

From above analysis, the SRS-TENG is capable of acting as a multifunctional vibra-

tion sensor for monitoring real-time vibration acceleration, amplitude and frequency. As 

shown in Figure 5f, the quantitative relationship of maximum acceleration (am), and out-

put current (Isc) is linear under a fixed vibration frequency, which can be determined as am 

= bISC, where b is a constant. Then, by substituting the real-time output current ISC to am = 

bISC, the maximum acceleration am is obtained, which can further be used to calculate the 

amplitude using Equation (2), where the frequency f can be easily obtained by the FFT 

result. Figure 6e indicates the logic diagram of the SRS-TENG as a self-powered vibration 

frequency detection and alarm system and an amplitude sensor. The practical application 

of the SRS-TENG to be an amplitude sensor is demonstrated in Figure 6f and Video S4 in 

the Supplementary Materials, in which the amplitude is displayed on the screen. Figure 

6g and Video S5 in the Supplementary Materials show the application scenario of the SRS-

TENG acting as the frequency alarm system, and when the frequency exceeds the limit, 

the red light illuminates. Here, the vibration frequency changes from 30 Hz to 40 Hz; after 

it reaches 40 Hz, which is set as the frequency limit, the alarm is triggered instantly. Fur-

thermore, the SRS-TENG is mounted on a commercial air compressor to monitor its work-

ing condition, as shown in Figure 6h. The air compressor is a two-stage type, with a rev-

olution speed of 1500 rpm. As illustrated in Figure 6i, the FFT result of the voltage signal 

was about 50 Hz, which is equal to the theoretical working frequency of the air compressor 

calculated by the equation fac = (1500 × 2)/60 = 50 Hz. 

3. Conclusions 

In summary, this work proposes a novel silicone rubber strip-based triboelectric nan-

ogenerator, which can work in different modes, as a broadband vibration energy har-

vester and multifunctional self-powered vibration sensor. The SRS-TENG is composed of 

two conductive aluminum electrodes supported by PLA and a silicone rubber strip with 

two ends fixed at half the height of the rectangular prism. The SRS-TENG is capable of 

acting as a vibration energy harvester and self-powered sensor in the vibration frequency 

range of 5–90 Hz and amplitude range of 0.5–9 mm. The SRS-TENG has obvious broad-

band advantages compared to spring-assisted TENGs, and a lower limit starting ad-

vantage than the bouncing-ball TENGs. In addition, the power density of the SRS-TENG 

can achieve 94.95 W/m3, and it can light up more than 100 LEDs and power a commercial 

temperature sensor after charging the capacitors. Moreover, because of the soft contact 

between the strip and electrodes, the SRS-TENG is robust and has hardly performance 

degradation, even after 14 days. Meanwhile, the SRS-TENG can be used as a multifunc-

tional vibration sensor, for example using the vibration frequency, amplitude and accel-

eration sensors. Furthermore, the SRS-TENG can be used to monitor vibration amplitude 

and emit vibration frequency alarms after processing. The amplitude value and frequency 

alarm can be displayed on the human–machine interface based on LabView. Finally, it can 

be successfully applied on the working frequency monitoring of an air compressor. In 

conclusion, the SRS-TENG is capable of acting as a sustainable broadband power source 

for sensor nodes and a self-powered multifunctional vibration sensor and vibration alarm 

system in various fields. 

4. Experimental Section 

4.1. Fabrication of the SRS-TENG 

Fabrication of the SRS-TENG: The schematic diagram of the new design is presented 

in Figure 1b. The device consists of a rectangular prism which was printed by a 3D printer. 

The aluminum layers with a thickness of 0.2 mm were attached on the top and bottom 

PLA housing as electrodes in addition to the positive triboelectric material. In the middle 

of the rectangular prism, the silicone rubber strip was fixed on both ends of the rectangu-

lar prism at half-height. 
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The silicone rubber strip was prepared using Eco-flex 30 silicone rubber part (A & B) 

(Smooth-On, Macungie, PA, USA) mixing of an equal ratio. A spin-coater was applied to 

spin the well-mixed silicone rubber on the surface of fine sandpaper to carry out the sur-

face modification of the silicone rubber membrane. The desired thickness of the silicone 

rubber strip was obtained by adjusting the rotation speed, acceleration, and rotating time 

of the spin-coater, which is shown in Table S1. Finally, the silicone rubber was dried in a 

constant temperature vacuum furnace for 12 h at the temperature of 40 °C. 

4.2. Observation of Movement of the Silicone Rubber Strip 

The movement of the silicone rubber strip was observed by applying a high-speed 

camera (FATCAM Mini UX50, Photron, Tokyo, Japan) and simulations were performed 

by COMSOL Multiphysics software (COMSOL Inc., Stockholm, Sweden). 

4.3. Measurement of the Electric Output 

The SRS-TENG was attached to an electrodynamic shaker (JZK-20, SINOCERA, Su-

zhou, China) driven by an amplifier (YE5852, SINOCERA, Suzhou, China) after receiving 

the vibration signal from an adjustable functional signal generator (YE1311, SINOCERA, 

Suzhou, China). The acceleration was detected by a commercial single-axis accelerometer 

(KS96.100, MMF, Radebeul, Germany), analyzed in a Dynamic Signal Analyzer (Inelta, 

Chengdu, China), and then displayed in DASP software (Inelta, Chengdu, China). The 

electric output signals, including open-circuit voltage, short-circuit current, and trans-

ferred charge, were measured by an electrometer (Keithley 6514, Tektronix, Beaverton, 

OR, USA) and sent to the LabView-based computer through a DAQ device. The FFT pro-

cess was carried out by the Origin software. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/nano12081248/s1, Figure S1: The working mechanism of the 

N-C model. Figure S2: Testing system for SRS-TENG. Figure S3: Performance comparison between 

the SRS-TENGs with double electrodes and a single electrode. Figure S4: Performance comparison 

between the SRS-TENGs with or without surface treatment of the strip. Figure S5: Performance 

comparison among the SRS-TENGs with different strip widths of 22, 30 and 42 mm. Figure S6: Per-

formance comparison among the SRS-TENGs with different strip thicknesses of 0.48, 0.86, and 1.2 

mm. Figure S7: Performance comparison among the SRS-TENGs with different air gaps of 5, 10 and 

15 mm. Table S1: Spin-coater parameter setting for different strip thickness. Video S1: Strip moving 

status under vibration frequencies of 10, 30 and 50 Hz with an amplitude of 1 mm. Video S2: Pow-

ering of a temperature sensor by the SRS-TENG. Video S3: Lighting up 112 LEDs by the SRS-TENG. 

Video S4: Demonstration of amplitude sensing. Video S5: Demonstration of vibration alarm system. 
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