
Observer-based Event-triggered Circle Formation
Control for Multi-agent Systems with Directed

Topologies

Peng Xu
Marine Engineering College,

Dalian Maritime University,

Dalian 116026, China

Guangming Xie
The State Key Laboratory of Turbulence and Complex Systems,

College of Engineering,

Peking University,

Beijing 100871, China

Jin Tao
Department of Electrical Engineering and Automation,

Aalto University,

Espoo 02150, Finland

College of Engineering,

Peking University,

Beijing 100871, China

Email: jin.tao@aalto.fi

Minyi Xu
Marine Engineering College,

Dalian Maritime University,

Dalian 116026, China

Email: xuminyi@dlmu.edu.cn

Abstract—This paper proposes an observer-based event-
triggered algorithm for circle formation control problems of first-
order multi-agent systems, where the communication topology
is modeled by a spanning tree-based directed graph with lim-
ited resources. Depending on the trigger threshold of specific
measurement error and compared with the norm of a function
with states, we apply an event-triggered mechanism to reduce
the updates frequency of the controller via observing continually
neighbors’ state. Sufficient conditions on desired circle formation
are derived following the resulting asynchronous network execu-
tions converge to the equilibrium points. Both the analysis and
numerical simulations show that Zeno behavior can be ruled out
under the designed control laws.

Keywords—Multi-agent Systems; Circle Formation; Event-
triggered; Directed Network

I. INTRODUCTION

In recent years, many research works have been done on

controlling of multi-agent systems (MASs) due to both its

practical potentials [1], [2] and theoretical challenges [3], [4],

[5]. As a significant issue in cooperative control for MASs,

formation control, aiming at guiding multiple agents to form

and maintain predetermined geometries, has attracted consid-

erable interests for its extensive applications in different fields

[6], [7], [8]. The primary attention has been devoted to the

design of distributed formation control framework, especially

concerning the increasing number of agents and the robustness
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against internal uncertainties and external disturbances[9],

[10]. Therefore, most current research results on formation

control mainly rely on the following ideal hypothesis [11],

[12], [13]. For example, each agent is modeled as unlimited

communication capabilities, unlimited power, and unlimited

processing capabilities, which allows arbitrary information

exchange patterns. However, in really systems, robots usually

have power constraints and limited capacity of communication.

In order to save energy and bandwidth for pratical applica-

tions, event-triggered control methodology has been proposed

[14], [15], [16], [17], [18]. The most distinct character of

event-triggered control is that control actions are updated only

when specific events occur and the trade-offs among actuator

effort, communication, and computation are eased. A simple

state event-triggered schedule based on the feedback controller

was studied in [14], which leads to a guaranteed performance

with a fixed sampling rate requirements concerning the opti-

mizing schedules and sampling rates. In [15], under conditions

of exponentially decreasing thresholds on the measurement

errors, a time-dependent triggering method was designed to

guarantee asymptotic convergence to a ball centered at the

average consensus.A distributed model-based approach was

derived under a class of the networks of nonlinear dynamical

agents to ensure the synchronization of the overall system[16].

Furthermore, [19] combined with event-triggered protocols to

solve circle formation problems for first-order MASs. Also,

[20], [21] investigated a combination algorithm based on

quantized communication technology, where the problem of

MASs with a limitation of communication was addressed.

Given the above reviews, it is noteworthy tha most of the
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existing results on event-triggered control are meant to prevent

the case of Zeno behaviors [22], [23], such that a finite

number of samplings generate within a finite amount of time.

Regularly, a sufficient condition to exclude Zeno behavior is

to ensure the event trigger interval is strictly positive lower

bounded [24].

Different from previous studies, especially in [19], [20],

the main objective of this paper is to provide a novel control

method to solve circle formation problem for first-order MASs

through a set of directed graphs. In this studies, similar to

Pioneer 3-DX in [25], each agent perceives distance through

communication from counterclockwise to its nearest neighbor,

and the counterpart in clockwise. The main contributions of

this paper are listed as below. Firstly, combining with a dis-

tributed asynchronous event-triggered control methodology, a

novel control method is designed to solve the circle formation

problem of first-order dynamics MASs. Secondly, based on the

analysis in [26], the proposed strategy allows for a reduction

of the number of control actions without significantly degrad-

ing performance. At last, the resulting asynchronous model

achieves an asymptotically desired equilibrium point while the

absence of Zeno behavior is guaranteed, i.e., no trajectory is

generated in a finite time interval.

The remainder of this paper is organized as follows. Prelim-

inary definitions and the problem formulation are presented

in Section II. In Section III, a distributed circle formation

control law for first-order MASs and the rigorous analysis of

its performance are given. Section IV discusses the simulation

results before we conclude in Section V.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we first introduce some notions and concepts

used througn out the paper, and then formulate a concerned

circle formation problem.

A. Preliminaries

For a finite set S, |S| denotes the number of its elements.

For a vector or a matrix A, ‖A‖ stands for its Euclidean norm,

‖A‖∞ stands for its ∞-norm and AT is its transpose. 1N and

0N are the N dimension column vectors with all entries 1
and 0, respectively. The matrix diag{a1, a2, ..., aN} denotes

the diagonal matrix with diagonal entries a1, a2, ..., aN .

The notation G = (V, E ,A) is a directed graph, where

V = {1, 2, ..., N} is a set of nodes, E = V × V denotes a

set edges, and A = [aij ] ∈ R
N×N stands for a weighted

adjacency matrix, where R denotes real numbers. In G, for

all i ∈ V , (i, i) �∈ E . Namely, edge (j, i) ∈ E , starting from

node j and ending to node i, indicates agent i can perceive

state information from agent j. Furthermore, agent j is called

an in-neighbor of agent i, and Ni = {j ∈ V | (j, i) ∈ E} is

used to represent the in-neighbors set of agent i. Especially,

the edge (i, j) links with the elements aij of a weighted

adjacency matrix A, aij > 0 if and only if (i, j) ∈ E ,

otherwise aij = 0. we use di =
∑N

j=1 aij to denote the

in-degree of agent i in G, and then define L = D − A as

Laplacian matrix of G, where D = diag{d1,d2, ...,dN}.

Subsequently, we list the eigenvalues of L in a descending

order: λN ≥ ... ≥ λ2 ≥ λ1 = 0, where λN denotes the

spectral radius of L.

The following lemmas are used to facilitate the analysis.

Lemma 1. ([27]) For any x, y ∈ R and a > 0, it has the
following properties

1.xy ≤ a

2
x2 +

1

2a
y2;

2.(x2 + y2) ≤ (x+ y)2, if xy ≥ 0.

Lemma 2. ([28]) Given a directed graph G, composed of a
spanning tree, the vector ξ = [ξ1, ξ2, ..., ξN ]T > 0 satisfies∑N

i=1 ξi = 1 and ξTL = 0N , in which ξ denotes the left
eigenvector corresponding to zero eigenvalue of the Laplacian
matrix L. Furthermore, LTΘ+ΘLT is semi-positive definite,
where Θ = diag{ξ1, ξ2, ..., ξN}. Taking extractions of the
square root of each element of Θ, a matrix is obtained as
Υ = diag{γ1, γ2, ..., γN}, where γi =

√
ξi, i = 1, ..., N .

B. Problem formulation

Consider a MAS with N (N ≥ 2) mobile agents, as shown

in Fig. 1, the agents are initially located on a predefined circle,

and no two agents occupy the same position simultaneously.

For simplicity, the agents are labeled counterclockwise, and

the position of each agent i ∈ {1, 2, ..., N} is measured by

angles xi(t). In general, the initial positions of agents are set

to follow the rule

0 ≤ x1(0) < ... < xi(0) < xi+1(0) < ... < xN (0) < 2π.
(1)

Fig. 1. Agents are distributed on a circle.

In this case, each agent only has two neighbors, Ni =
{i+, i−} is given to denote two neighbors of mobile agent

i, where

i+ =

{
i+ 1, when i = 1, 2, ..., N − 1,

1, when i = N,
(2)
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Fig. 2. A strongly connected digraph G with N agents.

and

i− =

{
N, when i = 1,

i− 1, when i = 2, 3, ..., N.
(3)

Then, the relationships of information exchange among

agents further being established in such a topology, in which

each agent i with a micro-sensor can only collect the the

angular distance from i and i+. On the other hand, the coun-

terpart from i and i− is obtained via a shared communication

topology. In this case, the communication topology can be

described as shown Fig. 2.

The dynamics of each agent for circle formation control is

given as

ẋi(t) = ui(t), i ∈ V, (4)

where xi ∈ R is the scalar state of agent i, and ui ∈ R is the

control input of agent i.
Based on counterclockwise at time t, yi(t) ∈ R is given

as the angular distance from agent i to agent i+ measured by

agent i. Along with rules (2) and (3), it yields

yi(t) =

{
xi+(t)− xi(t), when i = 1, 2, ..., N − 1,

xi+(t)− xi(t) + 2π, when i = N,
(5)

where the stack vector y(t) = [y1(t), y2(t), ..., yN (t)]T ∈ R
N ,

and
∑N

i=1 yi(t) = 2π always holds.

Assume the desired circle formation is determined by vector

d = [d1, d2, ..., dN ]T ,

where di ∈ R stands for the desired angular distance between

agent i and agent i+. A desired circle formation is admissible

if and only if d satisfies di > 0 and
∑N

i=1 di = 2π, i =
1, 2, ..., N .

The definition of the circle formation problem for first-order

MASs is described as

Definition 1. (Circle Formation Problem of First-order MASs)
Given an admissible circle formation characterized by d, a
distributed control law ui(t, yi(t)), i = 1, 2, ..., N is designed,
such that the solution to system (4) converges to some equilib-
rium point x∗ under any initial condition (1). That is, y∗ = d
satisfies.

III. OBSERVER-BASED EVENT-TRIGGERED CONTROL LAW

According to the sampled-date based way-point control law

designed in [7], given as

ui(t) =
di−

di + di−
yi(t)− di

di + di−
yi−(t), t ≥ 0, (6)

From [7], we know that the continuous updating control law

(6) can drive all agents move to their equilibrium point x∗,

however typically wasting unnecessary transmission energy

and communication bandwidth. In order to solve this problem,

an observer-based event-triggered strategy is proposed. Note

that the controllers of agents only update at discrete event

instants, where continuous communication between neighbor-

ing agents maintains. Furthermore, intermediate variables are

introduced as the increasing sequence ti0, t
i
1, ..., t

i
k, ... to denote

event instants of agent i, such that yi(t
i
k) is the state of agent

i at the kth event instant. Therefore, each agent has its event

sequence because all agents are triggered asynchronously.

According to the event-triggered strategy, the distributed

circle formation control law for agent i is designed as

ui(t) =
di−

di− + di
yi(t

i
k)−

di
di− + di

yi−(t
i−
k, ), t ∈ [tik, t

i
k+1),

(7)

where ti
−
k, � argmin

l∈N,t≥ti
−

l
{t − ti

−
l } represents the last

event instant of agent i−.

From (7), the controller of agent i updates at its own event

sequence (ti0, t
i
1, ..., t

i
k, ...). We define ŷi(t) = yi(t

i
k), δ̂i(t) =

ŷi(t)
di

. Therefore, the control law (7) can be written as

ui(t) =
didi−

di− + di
(δ̂i(t)− δ̂i−(t)), t ∈ [tik, t

i
k+1). (8)

Replacing (5) and (8) into (4), the closed-loop of agent i
can be rewritten by δi as

δ̇i(t) =
∑
j∈Ni

dj
di + dj

(
δ̂j(t)− δ̂i(t)

)
, t ≥ 0. (9)

Define a deviation variable ei(t) = δ̂i(t) − δi(t), then a

compact form of the system dynamics can be written as

δ̇(t) = −LT
d (δ(t) + e(t)), t ∈ [tik, t

i
k+1), (10)

where δ(t) = [δ1(t), δ2(t), ..., δN (t)] ∈ R
N , e(t) =

[e1(t), e2(t), ..., eN (t)] ∈ R
N ,

Based on the designed control law (8) and system (10),

the event-triggered circle formation control for the distributed

MAS is solved by the following theorem.

Theorem 1. Given any admissible circle formation charac-
terized by d, and take into consideration system (10) and
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L(d) =

⎡
⎢⎢⎢⎢⎢⎢⎣

d2

d2+d1
+ dN

dN+d1
− d1

d2+d1
0 . . . 0 − d1

dN+d1

− d2

d2+d1

d3

d3+d2
+ d1

d2+d1
− d2

d3+d2
. . . 0 0

...
...

...
...

...
...

0 0 0 . . . dN

dN+dN−1
+ dN−2

dN−1+dN−2
− dN−1

dN+dN−1

− dN

dN+d1
0 0 . . . − dN

dN+dN−1

d1

dN+d1
+ dN−1

dN+dN−1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (11)

the designed control law (8) over a strongly connected
weight-unbalanced digraph G, the circle formation problem
is solvable when the observer-based event-trigger condition is
designed as

fi(t) = ‖ei(t)‖ − σ‖γiδ̄i‖
‖ΥLT

d ‖
, 0 < σ < 1, (12)

where δ̄i is the ith elements of δ̄ = [δ̄1, δ̄2, ..., δ̄N ]T � LT
d δ, Υ

is the same diagonal matrix as described in Lemma 2, γi is
the ith diagonal element of matrix Υ. Moreover, there exists
at least one agents m ∈ V in system (10), which prevents
occurrence of Zeno behavior under event-trigger condition
(12).

Proof. To show the effectiveness of the proposed control law,

Lyapunov function in [29] is considered

V (t) =
1

4
δT (t)(LdΘ+ΘLT

d )δ(t), (13)

where Θ is the same diagonal matrix as Lemma 2, such that

LdΘ+ΘLT
d is semi-positive definite.

As a result, V (t) ≤ 0 and V (t) = 0 if the circle formation

problem is solvable. The derivative of the Lyapunov function

(13) along of the trajectories yields

V̇ (t) = δT (t)LdΘ(−LT
d (δ(t) + e(t)))

= −δT (t)LdΘLT
d δ(t)− δT (t)LdΘLT

d e(t)

≤ −‖ΥLT
d δ(t)‖2 + ‖ΥLT

d δ(t)‖‖ΥLT
d e(t)‖.

(14)

Enforcing the event condition in (12), ‖ΥLT
d e(t)‖ ≤

‖ΥLT
d ‖‖e(t)‖ ≤ σ‖ΥLT

d δ‖. Thus, (14) is rewritten as

V̇ (t) ≤ ‖ΥLT
d δ(t)‖2(σ − 1)

≤ ‖Υδ̄(t)‖2(σ − 1).
(15)

Obviously, δ̄(t) can be calculated by observing continually

neighbors’ states. As 0 < σ < 1, V̇ (t) ≤ 0 and V̇ (t) = 0 if

the circle formation problem is solvable.

According to the Lemma 2, we have

N∑
i=1

ξiδi(t+ 1) =
N∑
i=1

ξiδi(t) = ... =
N∑
i=1

ξiδi(0).

Combining (7) and (12), all conditions lead to

lim
t→∞ δi(t) = lim

t→∞ δj(t) =
N∑
i=1

ξiδi(0) = c, (16)

where c ∈ R is a constant.

In addition,
∑N

i=1 yi = 2π, ∀t ≥ 0 always satisfies, with∑N
i=1 di = 2π, yi(t) = diδi(t), we conclude that c = 1. More

precisely, limt→∞ y(t) = d shows that the designed circle

formation can be reached.

To avoid Zeno behaviour, an estimate of the positive lower

bound on the inter-event times is further demonstrated. It is

easy to obtain that for agent i, the event interval between

tik+1 and tik is the period that
‖ei(t)‖
γiδ̄i

increases 0 to σ
‖ΥLT

d ‖ .

Define m = argmaxi∈V ‖γiδ̄i‖. Therefore, agent m stands for

maximum the maximum norm of γiδ̄i among all the agents.

It implies

‖em(t)‖
‖γmδ̄m‖ ≤ ‖e(t)‖

‖γmδ̄m‖ ≤
√
N‖e(t)‖
‖Υδ̄‖ . (17)

From (17), the time
‖em(t)‖
‖γmδ̄m‖ attains σ

‖ΥLT
d ‖ is longer than

√
N‖e(t)‖
‖Υδ̄‖ costs. That is, we have τm > τ , where τm represents

positive interval (tmk+1− tmk ) lower bound, τ is the time
‖e(t)‖
‖Υδ̄‖

increases 0 to σ√
N‖ΥLT

d ‖ . Thereby, the time derivative of
‖e(t)‖
‖Υδ̄‖

is

d

dt

‖e(t)‖
‖Υδ̄‖ =

d

dt

(e(t)T e(t))1/2

(δ̄TΥΥδ̄)1/2

=
e(t)ė(t)

‖e(t)‖‖Υδ̄‖ − δ̄TΥΥ ˙̄δ‖e(t)‖
‖Υδ̄‖3

=
−e(t)Υ−1Υ(δ̄ + LT

d e(t))

‖e(t)‖‖Υδ̄‖ − δ̄TΥΥLT
d (δ̄ + LT

d e(t))‖e(t)‖
‖Υδ̄‖2‖Υδ̄‖

≤ ‖Υ−1‖(‖Υδ̄‖+ ‖ΥLT
d e(t))‖

‖Υδ̄‖ +
‖ΥLT

d ‖‖Υ−1‖(‖Υδ̄‖+ ‖ΥLT
d e(t)‖)‖

‖Υδ̄‖2

≤ ‖Υ‖
(
1 +

‖e(t)‖‖ΥLT
d ‖‖Υδ̄‖

‖Υδ̄‖
)2

.

(18)

Using β to stand for
‖e(t)‖
‖Υδ̄‖ , it yields β̇ ≤ ‖Υ−1‖(1 +

‖ΥLT
d ‖β)2. Here, β satisfies the bound β ≤ α(t, α0),

where α(t, α0) is the solution of α̇(t, α0) = ‖Υ−1‖(1 +
‖ΥLT

d ‖α(t, α0))
2, α(0, α0) = α0.

According to

dα

‖Υ−1‖(1 + ‖ΥLT
d ‖α(t, α0))2

= dt, (19)

We see that the interval between event instant tk and tk+1

is lower bounded by the interval τ which satisfies α(τ, 0) =
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σ
‖ΥLT

d ‖ . By solving the difference equation (19), it yields

τ =
dα(τ, 0)

‖Υ−1‖(1 + ‖ΥLT
d ‖α(τ, 0))

=
σ

(1 + σ)‖ΥLT
d ‖‖Υ−1‖ .

(20)

From (20), we have

τ =
σ

(
√
N + σ)‖ΥLT

d ‖‖Υ−1‖ , (21)

where τ is the time
‖e(t)‖
‖Υδ̄‖ from 0 to σ√

N‖ΥLT
d ‖ .

We observe that it leads to the minimal interval between

two event instants of agent m

τm =
σ

(
√
N + σ)‖ΥLT

d ‖‖Υ−1‖ (22)

It is easy to obtain τm > 0, thus, we conclude that there

exists at least one agents m ∈ N in system (10), which

prevents occurrence of Zeno behavior under a observer-based

event-trigger condition (12).

IV. SIMULATION RESULTS

Considering a MAS with 6 agents, the desired dis-

tances between each pair of adjacent agents is set to

d =
[
π
8 ,

π
2 ,

3π
8 , π

2 ,
π
3 ,

π
6

]T
which meet (6), and the ini-

tial values of MAS are randomly generated satisfying (5).
Additionally, the unique normalized positive left eigen-

vector of LT
d with respect to eigenvalue 0 is ξ =

[0.0625 0.0.25 0.1875 0.25 0.1667 0.0833]T . Note that all

of the simulated event detections are implemented as sample

data. Thus, the sampling periods h in real-time control is set

to 0.2s.

By the permitted range 0 < σ < 1, we set σ = 0.9 to

ensure the condition (12) hold in real-time control. Figure 3
(a) shows the evolution difference between the event-triggered

angular distance and the expected counterpart, Figure 3 (b)

reveals the event sequence of each agent. Figure 4 illustrates

the fluttering of the measurement error ‖yi(tik)− yi(t)‖.

We can obtain from the simulation results that the desired

circle formation can be asymptotically solved by the proposed

control scheme for distributed first-order MASs. We also

calculate the average inter-event time overall mobile agents

havg = 0.6059 from Figure 3, the result indicates that our

method can reduce the amount of control update for formation

control of MASs.

V. CONCLUSION

This paper investigated the circle formation control problem

for first-order MASs under unbalanced directed networks with

limited resource constraints. We first designed the observer-

based event-triggered algorithm to reduce dependence on

resources, in which, when the value of the event-triggering

condition exceeds zero, the agent’s controller will update the

agent’s states simultaneously. Moreover, it is a fundamental

and practical aspect to observe neighbor information on a

regular or better basis continuously. Then, we proved that if

there is a spanning tree in the underlying graph, the MASs can

achieve the desired circle formation by the proposed control

laws, and Zeno behaviors can be ruled out. In the end, we

gave numerical simulation examples to show that for first-

order MASs, the proposed event-triggered circle formation

control strategies are effective. In future work, we will extend

our research to more practical operations, e.g., considering

the effect of time delays in communication networks, input

saturation constraints, and weak links.
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