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ABSTRACT With the growing demand for emission reductions and fuel efficiency improvements, alternative
energy sources and energy storage technologies are becoming popular in a ship microgrid. In order
to balance the two non-compatible objectives, a new differential evolution variant, which is named as
SaCIDE-r , was proposed to solve the optimization problem. In this algorithm, a Collective Intelligence (CI)
based mutation operator was proposed by mixing some promising donor vectors in the current population.
Besides, a self-adaptive mechanism which was developed to avoid introducing extra control parameters.
Further, to avoid being trapped in local optima, a re-initialization mechanism was developed. Then, we have
evaluated the performances of the proposed SaCIDE-r approach by studying some numerical optimization
problems of Congress on Evolutionary Computation (CEC) 2013 with D = 30, compared with seven state-
of-the-art DE algorithms. Moreover, the proposed SaCIDE-r method was applied for economic scheduling
of a shipboard microgrid under different cases compared with other multi-objective optimizing methods,
resulting in very competitive performances. The comprehensive experimental results have demonstrated that
the presented SaCIDE-r method might be a feasible solution for such a kind of optimization problem.

INDEX TERMS Shipboard microgrid, global optimization, collective intelligence (CI), differential
evolution (DE).

I. INTRODUCTION
For most conventional cargo ships, in which Diesel Gener-
ators (DG) are the main power sources, DGs can be well
controlled to meet the required power demands on board.
Since 1997 stated in the International Convention for the
Prevention of Pollution From Ships, which is usually shorten
as MARPOL, by international maritime organization, min-
imizing operation costs and reducing gases emissions have
become the main targets, which might be not compatible [1].
To meet the growing demands of the emission efficiency,
power grids in conventional ships must be supplemented
with some renewable sources such as Wind Turbines (WT),
Photovoltaics (PV), battery system and fuel cells [2]–[4]. It is
a central concept for such a hybrid microgrid to coordinately
optimize the operations of DGs, PV,WT and batteries [5], [6].
For hybrid microgrids onboard, the islanded mode is the most
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frequently used operationmode, and the interconnectedmode
is barely used. Among the renewable power sources, the PV
generator is the most applicable for hybrid microgrids on
board [7], [8]. Therefore, a shipboard microgrid mixing with
PV, WT, battery and DG might be an feasible solution [8].

Many investigations have been conducted on such hybrid
microgrids [9]–[13] by using HOMER software, which is a
traditional tool for designing, optimizing and performance
assessment of the hybrid power schemes. Nonetheless, there
are some limitations in using this software which necessitate
developing new approaches, and several optimization meth-
ods have been reported for sizing hybrid power schemes.
Utilizing artificial intelligence is an appropriate approach
to enhance the optimization process. Also, to overcome
the problems related to using one method for optimization,
hybrid optimization algorithms can be advantageous. In [14],
the authors used a Clonal selection technique to optimize a
hybrid solar and wind scheme with a battery to utilize its out-
put with minimum cost and a small fluctuation rate. In [15],
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the authors used an intelligent flower pollination algorithm
to size optimally a hybrid system (solar/wind/hydrogen),
minimizing the total life cycle cost. In [16], they investi-
gated the effectiveness of Cuckoo Search in using a hybrid
solar/wind/battery scheme design problem in an isolated area
in India. Reference [17] Used the well-known heuristic meth-
ods based on simulated annealing (SA) for size optimiza-
tion of a standalone PV-wind electrical system including a
battery with minimum cost. The considered decision vari-
ables were as follows: capacity/size of WT, PV and bat-
tery (BAT). The authors found that the proposed method
(SA) provides superior results relative to the other method.
In another paper, the effect of using forecast load information
instead of past information on the small independent hybrid
power performance is investigated [18]. In [19], the sizing
problem for a PV/WT/DG/fuel cell is solved by considering
different hybrid systems and two scenarios related to the
cost of the diesel fuel. Reference [20] Evaluated the per-
formance of different evolutionary algorithms for optimum
sizing of a PV/WT/battery hybrid system to continuously
satisfy the load demand with the minimal total annual cost.
In another paper, the size of the battery bank, the area of the
photovoltaic system, and the fuel consumption of the diesel
generator within the proposed hybrid system are optimized
so as to minimize the life cycle cost of the system, and an
efficient meta-heuristic technique based on tabu search is
used [21]. In another research [22], the optimum sizing for a
hybrid wind and solar energy system with energy storage was
developed using a hybrid optimization algorithm based on
Chaotic Search (CS) and Simulated Annealing (SA), namely,
the hybrid search algorithm (HSA). The results are compared
with those individually from the original Simulated Anneal-
ing and original Chaotic Search. These hybrid methods pro-
vide a new way for optimizing microgrids, showing some
advantages and application prospects. Although the above
investigations used various heuristic methods to solve the
optimal sizing problem of hybrid power systems, the opti-
mization objectives may not be suitable for shipboard micro-
grids. A shipboard hybrid microgrid is an isolated power
grid with a very small size. In our study case, a microgrid
in a barge consists of a PV (10kW), a WT (10kW), a DG
(15kW) and a battery system (40kW). The max power of
loads is not bigger than 12kW. For such a specific microgrid,
loads usually vary according to the requirement of cargos
and the ship owner with some randomness. Besides, a barge
often locates at different anchorages. Thus, it is not feasible
to evaluate the total annual cost for a shipboard microgrid.
It seems to build up a more suitable optimizing modal for
shipboard microgrids. On the other hand, the above methods
are used to solve the optimization problem with single objec-
tive. Whereas, optimizing shipboard microgrids considering
multi-objective need further investigations.

Compared with the various researches on hybrid micro-
grids land-based, it seems insufficient for investigations on
optimizing microgrid of shipboards. In [23], the authors
hybridized two types of energy storage systems and

proposed a two-step multi-objective optimization method for
optimizing the management for all-electric ships. In [24],
that investigation extended the principles of optimal planning
and economic dispatch problems to shipboard systems by
minimizing operating costs of DGs and energy storage sys-
tems. In [25], that paper focused on a parameter identification
method for an electric model of a battery storage system on
board. In [8], the authors presented the experimental results
from the operation of a proto-type green ship. In [1], the
investigation proposed an energy management system of the
electrical system for a yacht to minimize fuel consumptions.
Most of the existing researches have focus on the optimiza-
tion of energy storage system and controllers, ignoring the
overall schedule at shipboard microgrid level. Moreover, pre-
vious works rarely noticed that it is necessary to minimize
the fuel cost and deterioration of the battery system for ship-
board microgrids hybrid with PV, WT and DGs. Thus, it is
necessary and significant to design an Energy Management
Systems (EMS) which could satisfy multi-objective for such
a shipboard hybrid microgrid.

Due to the complexity of scheduling microgrids con-
sidering efficiency and emission, many algorithms have
been proposed to address this issue. In [26], a method
which combined a real-coded Genetic Algorithm (GA) and
a Mixed Integer Linear Programming (MILP) was proposed
to schedule the economic dispatch of the microgrid. In [27],
the authors proposed an adaptive nesting evolutionary algo-
rithm to optimize the configuration and planning of a micro-
grid. In [28], the authors presented a two-stage robust optimal
dispatch model for a representative islanded microgrid which
mixed with Alternating Current (AC) and Direct Current
(DC). In [29], that paper proposed a framework to conduct
robust/stochastic optimization of amicrogrid considering real
and reactive power flow. The optimizing problem is a mixed
integer nonlinear programming (MINLP) problem, which
was solved by a software. In [30], the authors proposed
a day-ahead economic scheduling of microgrid considering
charging/discharging cycles of the battery system. And the
objective functions were solved by using a hybrid method
mixed with Particle Swarm Optimization (PSO), the Rain-
flow algorithm and scenario techniques. In [31], that paper
proposed an approximate dynamic programming approach
for the economic dispatch of a microgrid with distributed
generators considering the uncertainties of stochastic vari-
ables. Although the above researchers have investigated this
problem by using various algorithms, the performance of
economic scheduling on board with multi-objectives is still
not satisfying due to the complexity.

Differential Evolution (DE) has been well accepted as a
easily-used but effective method in the family of Evolution-
ary Algorithm (EA) [32]. Over the past two decades, many
variants [33]–[41] of DE have been developed to solve vari-
ous engineering problems, such as optimal power flow [42],
parameters identification [43], feature selection [44], railway
line planning [45], wireless sensor network [46], optimal
location of battery swapping stations [47], mild depressive
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detection [48], path planning of mobile robots [49] and DC
motor controller [50]. For DE algorithm, it is crucial to
generate a new mutant vector for the final performance of
the designed DE. In most cases, the mutant vectors come
from randomly selected vectors or/and the best vector in the
current population. Such a kind of mutation operator only
uses a few individuals in the population. It is different from
what has been observed in other engineering domains [51].
Meanwhile, it is also very important for DEs to avoid meeting
a stagnation which means no better solutions generated [52].
To address these issues, we would like to propose a new
Self-adaptive Collective Intelligence (CI) Differential Evolu-
tion algorithm with a restart mechanism (SaCIDE-r) for opti-
mizing the economic scheduling of a shipboard microgrid.

CI [53] is defined as a type of group intelligence derived
from collective efforts, the collaboration, and competition of
many members and appears in consensus decision-making.
Usually, the decision made by a group is often better than
the decision made by a single individual. CI can be defined
as a process of collecting opinions or information of the
individuals in a group, and then constructing the information
to make a more promising decision. This new intelligence
can be formed in humans and computer networks, animals,
bacteria, and appears in many forms of consensus decision-
making mode. It has been widely used in various engineering
problems, such as forecast [54], wireless sensor network [55],
business [56], nonlinear optimization [57], max power point
tracking [58], and debugging [59]. Thus, we are trying to
combine this technique with DE algorithm to find better solu-
tions of the economic scheduling of a shipboard microgrid.

This paper aims at optimizing economic day-ahead dis-
patch of a shipboard microgrid. Such a control model usu-
ally provides a series of outputs of DG and the battery
system 24 hours ahead. For land-based large-scale micro-
grids, history data of WT, PV and loads are easily stored,
as a result, total annual cost is widely used. Whereas, for
shipboard microgrids, data of renewable sources change fre-
quently among different shipping lines. It is difficult to store
the data and evaluate the cost annually. Thus, a day-ahead
scheduling in 24 hours is the most widely used mode, which
is different from some researches on optimizing economic
dispatch of microgrids in seconds or minutes. Those inves-
tigations usually focus on the performances of controllers
of DC/AC inverters. This paper presents an improved DE
algorithm named as SaCIDE-r combinedwith CI and a restart
mechanism. The main features are summarized as follows:
• We propose a new CI-based mutation operator which
mixes the potential valuable information of m best vec-
tors. Furthermore, the m value is self-adapted by a new
presented exponential function.

• A re-initialization strategy is introduced when the pop-
ulation meets a stagnation.

The rest of paper is organized as follows. Section 2 describes
the basic framework of a shipboard microgrid and mod-
els of power sources. Section 3 provides the math model
of the multi-objective optimization problem of economic

FIGURE 1. The structure of the shipboard microgrid.

scheduling for a shipboard microgrid. Section 4 presents the
structure of the proposed SaCIDE-r algorithm and numerical
experiments on CEC 2013 test functions. Section 5 describes
the implement of this proposed method to optimizing the
scheduling of a shipboard microgrid. Section 6 conducts
case studies with different scenarios compared with other
multi-objective algorithms. Finally, this paper is concluded
in Section 7.

II. FRAMEWORK OF SHIPBOARD MICROGRID
A. STRUCTURE OF SHIPBOARD HYBRID MICROGRID
First of all, we should give a description of the basic structure
of a shipboard microgrid mixed with some types of power
sources. As shown in Fig. 1, the shipboard microgrid consists
of DG, PV, WT, battery system and loads. These components
are controlled by an EMS and connected through power
lines (red) and communication lines (green). Among the
power sources there are two types: non-dispatchable sources
(PV, WT) and dispatchable sources (DG, battery). In this
paper, it is assumed that the EMS controls the operations
of the shipboard microgrid. In most cases, shipboard micro-
grids operate in an islanded mode. It should be noticed that
this paper uses a day-ahead control mode which calculates
outputs of the controllable power sources at each hour in a
day. First, the EMS will forecast the output power of PV,
WT and loads required in the next day. Second, based on these
information and the State of Charge (SOC) of the battery sys-
tem, the outputs of all dispatchable sources are calculated to
obtain the total losses of the shipboard microgrid. Generally
speaking, the charging and discharging losses of the battery
system and the fuel costs must be considered. Differential
from other terrestrial microgrids, shipboard microgrid barely
operates in the grid-connectedmode. Thus, we do not concern
the electricity price. In the following parts, we will introduce
the math models of power sources on board.

B. SOLAR GENERATOR MODEL
Considering the size and the efficiency of PV generator,
it could be determined as a function as follows [30]:

Ps = ηs · A · SI (1+ γ (t0 − 25)) (1)
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FIGURE 2. Predicted output powers of PV in 24 hours.

where ηs is the efficiency of PV generators; A is the area of
PV panels; SI represents the solar irradiation; t0 is the air
temperature; γ is the temperature coefficient of the maxi-
mum output power. Usually, the power outputs of PV in the
next day are forecasted based on the history data. To make
our investigation focused, it is assumed that the outputs are
already calculated. Fig. 2. Shows an example of predicted
output power of a PV generator over a 24 h horizon.

C. WIND TURBINE MODEL
The output power of a WT relies on wind velocities at the
turbine power rating and wind speed. The function of output
power could be built up as follows [60]:

Pw =


0 if v ≥ vf | v ≤ vc

Pr
v3 − v3c
v3r − v3c

else if vc < v < vr

Pr otherwise

(2)

where v refers to the wind speed; vc and vf denote the cut-in
and the cut-off wind speed, respectively; vr is the rated wind
speed; Pr represents the rated electrical power ofWT. Similar
with the output power of PV, in this study, the outputs of
WT day-ahead are already forecasted and stored in the EMS.
Fig. 3 provides the predicted outputs over a 24 h horizon.

D. BATTERY SYSTEM MODEL
In this paper, we choose lithium-ion (Li-ion) batteries as the
storage system instead of flywheel, fuel cell and supercon-
ducting magnetic energy storage. Li battery is one of the
most popular storage systems and widely used in terrestrial
microgrid due to the higher ratio of energy over weight
and a slow loss of charge during idle conditions [61]. The
charging-discharging performance of the battery is described
with respect to SOC as follows [30]:

SOC(T ) = SOC(T − 1)+1TPc(T )ηc (3)

SOC(T ) = SOC(T − 1)−1TPd (T )/ηd (4)

where ηd and ηc are the discharging and charging efficiencies,
respectively; 1t is the interval of the simulation period and
set to 1 hour in this study; Pc(t) is the charging power at tth
time; Pd (t) is the discharging power at tth time.
Power exchanges between the battery and a hybrid micro-

grid will lead to frequent charging/discharging processes of

FIGURE 3. Predicted output powers of WT in 24 hours.

FIGURE 4. The cost characteristics of a battery system with respect
to SOC.

the battery system. It is generally accepted that, the battery
system has a larger capital investment and shorter lifetime
than the other devices in the microgrid. Thus, it is not a
negligible cost which is associated with the degradation of
the battery system. Usually, the loss cost per kWh of a bat-
tery system is a function of SOC [28]. Fig. 4 illustrates the
relationship between the cost coefficient and SOC. In that
figure, point A denotes that the loss cost of the battery system
is 0.1912U/kWh with SOC is 0.1. Point B represents the loss
cost of the battery system is 0.0599U/kWh when SOC is 0.9.

III. MATH MODEL OF THE OPTIMIZATION PROBLEM
In this part, wewould like to give themathmodel of themulti-
objective optimization, i.e., economic scheduling of a ship-
board microgrid. There are two non-compatible objectives or
criteria, which are minimizing the fuel consumption and the
cycle degradation of the battery system. A series of feasible
solution points, which are call Pareto front, should be found
to meet the economic goal. Next, the objective functions will
be built up as follows.

A. OBJECTIVE FUNCTIONS
First of all, the primary concerning of a shipboard microgrid
is to reduce the fuel cost. It is noticed that the problem
is investigated in a 24-hours period. Therefore, a day time
intervals with different load demands are considered in the
calculation. The total cost consists of the fuel cost is formu-
lated in the below.

f1 = min
T∑
t=1

NDG∑
i=1

(CF + CE )PDG,i(t) (5)
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where CF and CE are the cost coefficients of fuel consump-
tion and emission for the DGs, respectively; PDG,i denotes
the output power of the ith DG; NDG is the total number of
generators on board.

For a shipboard microgrid, to reduce the total life losses
of the battery system is also very important. In this paper,
an objective function which considers degradation cost of
charging-discharging cycles of a battery system is proposed
as follows [30]:

f2 = min
T∑
t=1

NB∑
j=1

CB
∣∣PB,j(t)∣∣ (6)

where CB denotes the cost coefficient of the battery system;
PB,j represents the output power of the jth battery; NB is the
total number of batteries on board.

From the above objectives we can see, in this study, the
optimization problem consists of two objectives which are
not compatible to each other. The requirement from load at
time t must be satisfied on board. If output power of the
battery system is high, then the output power of DG will be
low, resulting in a big fitness value of f1 and a small fitness
value of f2, and vice versa. These two objectives could not be
satisfied at the same time.

B. CONSTRAINTS
The objective functions should be subjected to the following
constraints:

Pmin
DG ≤ PDG(t) ≤ Pmax

DG (7)

Pmin
B ≤ PB(t) ≤ Pmax

B (8)

SOCmin ≤SOC(t)≤SOCmax (9)

PPV (t)+ PWT (t)+ PDG(t)+ PB(t) = PL(t) (10)

where PL(t) means the demand of loads; Pmin
DG and Pmax

DG
denote the lower and upper limits of output power for DG
at time t , respectively; Pmin

B and Pmax
B denote the lower and

upper limits of output power for the battery at time t , respec-
tively.

A multi-objective optimization (MOP) problem [62] is
defined as an optimization problem with more than one con-
flict meaning targets. As we have mentioned before, each
objective is not compatible to the others. Thus, a series of
solutions which are named as Pareto front should be resulted.
The general formulation of anMOPwith constraints could be
described as follows:

minF(X) = {f1(X), f2(X), . . . , fN (X)}

subject to :

{
gi(X) = 0 i = 1, 2, . . . ,m
hj(X) ≤ 0 j = 1, 2, . . . , n

(11)

where F(X) denotes the objective functions; X is the vector
of the control variables; gi(X) and hj(X) represent the con-
straints of equality and inequality, respectively. It is assumed
that, X1 and X2 are two optimized solutions for a MOP.
The nomination solution which means that if and only if X1

FIGURE 5. Illustration of a CI-based solution through a simple
minimization function.

partially less than X2 is formulated as below:{
fi(X1) ≤ fi(X2), ∀i = 1, 2, . . . ,N
fi(X1) ≤ fi(X2), ∃i ∈ {1, 2, . . . ,N }

(12)

Then we call that X1 dominates X2. In the search space,
the non-dominated solutions are considered as Pareto solu-
tions. The Pareto front consists of non-dominated solutions.

For the above multi-objective economic scheduling prob-
lem of a shipboard hybridmicrogrid, it is necessary to develop
a powerful algorithm to find the optimal and feasible solu-
tions. The optimization problem in this paper is a MOP with
some equality and inequality constraints. In the next part,
we will give a full descriptions on the proposed SaCIDE-r
algorithm for solving this problem.

IV. SaCIDE-R ALGORITHM
In this section, we would like to present all the evolutionary
operators with a restart mechanism and the adaptions of
control parameters of the presented SaCIDE-r algorithm.

A. MOTIVATION OF CI-BASED MUTATION
For most DE variants, the mutant vectors are composed of
either randomly selected vector or/and the best vector in the
current population. Here, we are trying to show themotivation
of using CI-based mutation strategy to improve the perfor-
mance of aDE algorithm.A simple illustration is given below.

It is considered that there is a very simple minimizing
optimization function with two variables. The function is
shown as follows:

f (x) = (x1 − 1)2 + (x2 − 1)2 , xi ∈ [−5, 5] (13)

Meanwhile, a 3D fitness landscape of this function is plot-
ted shown as Fig. 5.

In the above figure, there are two solutions A (5, 4) which
is marked as red color and B (−1, 0) which is marked as green
color. In current population, the rank of fitness value rA is 8,
and the rank of fitness value rB is 4. By using a CI-based
linear combination, the new solution C (1, 1.33) with a fitness
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value 0.11 could be calculated as follows:

C =
rB

rA + rB
A+

rA
rA + rB

B (14)

After calculating the collective information of A and B,
a new solution C with better fitness value is obtained. Thus,
the CI-based calculation may provide a promising evolving
direction to improve the searching efficiency. Although such
an improvement is obtained by using a unimodal function,
based on our previous experiments, it is also possible for
multi-modal and composition functions. Thus, we would like
to incorporate this CI-based theory into DE algorithm to
generate more promising mutant vectors, resulting in more
powerful exploration and exploitation capabilities.

B. EVOLUTIONARY OPERATIONS OF SaCIDE-R
At each generation G, DE algorithm evolves a population,
which could be presented as Xi,G = (x1i,G, x

2
i,G, . . . , x

D
i,G|i =

1, 2, . . . , NP), where NP is the population size, D is the
dimension of the problem. After initialization the population
is randomly generated within the search domains. Conven-
tional DE algorithm is executed by the following three steps:
mutation, crossover and selection.

This new mutation operator mixes collective information
of some top ranked and randomly selection vectors to gener-
ate mutant vector as follows:

Vsaci_i,G

= Xi,G + F ·
(
Xsaci_best,G − Xi,G

)
+ F ·

(
Xr i1,G

− Xr i2,G

)
(15)

whereXsaci_best,G is a composite vector mixed with some top
ranked vectors at the Gth generation. Xsaci_best,G is denoted
as follows:

Xsaci_best,G =

m∑
k=1

wk · Xk,G (16)

where m denotes the number of top ranked vectors in the cur-
rent population, wk represents the weight of the kth selected
vector Xk,G within the group of m top ranked vectors at Gth
generation. In this paper, the weight for each selected vector
is calculated as follows:

wk =
m− k + 1

1+ 2+ . . .+ m
for k = 1, 2, . . .m. (17)

From the above equations we can see, the proposed muta-
tion vector is a mixture of a linear combination of m top
ranked vectors and two other randomly selected vectors. Dif-
ferent from DE/rand/1, such a mutation operator combines
the information which come from some promising vectors
with better fitness values in the current population based
on CI theory, resulting in a better mutation vector. As we
mentioned before, the decision made by a single individ-
ual is usually worse than the decision made by a group.
Thus, the proposed CI mutation operator may guide the
donor vector towards potential better searching areas com-
pared with DE/rand/1 and other mutation strategies. In this

FIGURE 6. Illustrating mutation scheme of proposed CI-based mutation
operator in 2D parametric space.

paper, the whole self-adaption of m could be described as
follows [63]: (1) generate the probability pi of exponentially
distributed random number whose mean is µ for each target
vector i; (2) generate mi for ith target vector according to pi
by using roulette wheel selection; (3) if a better trial vector
is obtained, the mi value would be added into the successful
record which is named as Sm; (4) estimate the mean value µ
of the successful record Sm; (5) go to step (1). The process of
CI-based mutation strategy on a 2D parameter space is shown
Fig. 6. In the following figure, a better mutation vector is
generated by using the proposed CI-based mutation strategy
obviously.

In the conventional version, the binomial crossover opera-
tor is often used as follows [34]:

ujsaci,G

=

{
vjsaci,G, if randj ≤ Cr or j = jrand
x ji,G, otherwise

j = 1, 2, . . . ,D

(18)

where the control parameter of crossover rate Cr is a positive
value within [0, 1], jrand is an integer randomized within
[1, D], randj is a random number obeys uniform distribution
generated within [0, 1] at jth dimension.

The selection operator is usually defined as follows:

Xi,G+1 =

{
Usaci,G, if f (Ui,G) < f (Xi,G)
Xi,G, otherwise

(19)

For adapting control parameters of SaCIDE, leaving NP as
a fixed value, we adapt F and Cr in a relatively simple but
effective manner. The equations are shown as follows [64]:

Fi,G+1 =

{
Fl + r1 · Fu, if r2 < τ1

Fi,G otherwise
(20)

Cri,G+1 =

{
r3, if r4 < τ2

Cri,G otherwise
(21)
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where r1, r2, r3, r4 are uniform random values within [0, 1],
τ1 and τ2 are two positive values to adjust F and Cr both
setting to 0.1 in our experiments, Fl is the lower limit
of F set to 0.1, Fu is the upper limit of F set to 0.9.

In summary, the pseudo code of the proposed SaCIDE
algorithm is described as Algorithm 1.

Algorithm 1 The Main Structure of SaCIDE
Initialize and evaluate X
While G ≤ Gmax DO

For i = 1: NP

Vsaci_i,G = Xi,G + Fi ·
(
Xsaci_best,G − Xi,G

)
+Fi ·

(
Xr i1,G

− Xr i2,G

)
;

For j = 1: D
If U(0,1) ≤ Cri, u

j
i = vjsaci

Else uji = x jsaci
End
If f (Ui) ≤ f (Xi), Xi = Ui
Renew Fi, Cri
End

End

C. RE-INITIALIZATION
From our previous experimental results, the current version
of SaCIDE still suffers from a premature and a stagnation,
although the performances on benchmark functions have
been improved to some extent. Generally speaking, prema-
ture convergence occurs when the population is trapped in
local optima. If the population will not find any better solu-
tions although the whole population is diversified, then such
a condition is called stagnation. It is very effective to re-
initialize the population for dealing with a premature conver-
gence and a stagnation. Both of the above two circumstances
could be detected by using the following equation:

stgG+1 =

{
0 f (Ui) < f (Xi)∀i ∈ {1, 2, . . . ,NP}

stgG + 1 f (Ui) ≥ f (Xi) ∃i ∈ {1, 2, . . . ,NP}

(22)

where stgG is an indicator which is used to monitor if the cur-
rent population meets a stagnation at Gth generation. If any
trial vector has a better fitness value than the corresponding
donor vector, then it means the population is not stagnant at
all. On the contrary, if all the trial vectors in the population
have worse fitness values than the donor vectors, the indicator
stgG would be added by 1. When stgG reaches to a threshold
value stgmax , resulting in a stagnant population, the restart
mechanism is triggered. In this study, the whole population
is re-initialized within the searching ranges but remaining
the m top ranked individuals. Such a design is to make a
trade-off between a diversified population with no search-
ing directions and currently promising searching directions.
Adopting similar presentation in [65], by incorporating this

TABLE 1. Parameter settings of involved DE algorithms.

re-initialization scheme, the whole SaCIDE-r algorithm is
described as Fig. 7.

D. EXPERIMENTAL RESULTS ON CEC2013 FUNCTIONS
In this part, we would like to conduct comprehensive experi-
ments to prove the effectiveness of the proposed SaCIDE-r
algorithm, compared with seven other state-of-the-art DE
algorithms. First, to test the performance on global optimiza-
tion problems, we select ten CEC2013 benchmark functions
with distinctive fitness landscapes with D = 30. The overall
accuracies and convergence curves will be reported. In this
paper, we adopted a Windows 10 operating system and the
MATLAB 2018a development environment as the simulation
platform. For fair comparisons, we chose the following seven
state-of-the-art DE algorithms shown in Tab. 1 with their
recommended setups.

The descriptions of the chosen functions are shown in
Tab. 2. According to the properties, these test functions are
classified into three types: uni-modal problems (f1, f4, f5),
basic multi-modal problems (f7, f11, f13, f16) and composition
problems (f21, f24, f27).
For all the test functions and the algorithms, NP was set

to 100. The max Function Evaluations (Max_FEs) was set
to 10000D. All the different algorithms on each benchmark
function were conducted over 31 independent runs. The error
values of all DE variants were given in Tab. 3 with D = 30.
To show the significance between the presented method and
another competitor, we also conducted the Wilcoxon rank
sum test at 0.05 level [69], [70], regarding SaCIDE-r vs.
another one as ‘‘+’’, ‘‘−’’, ‘‘≈’’. ‘‘+’’ (win) means the pro-
posed method is significantly better than another algorithm,
‘‘−’’ (lose) represents the proposed method is significantly
worse than another algorithm, and ‘‘≈’’ (tie) denotes the
proposed method is significantly equal to another algorithm.
The comparison results were summarized as ‘‘w/t/l’’ in the
following tables. The best results among the comparison were
shown in bold.

From Tab. 3 we can see, the proposed method has beaten
the other algorithms on 3 to 7 test functions. Meanwhile,
SaCIDE-r algorithm was only defeated by SaDE on f11,
rank_jDE on f1 and f4. Take JADE as an example,
SaCIDE-r algorithm has outperformed JADE on 5 test func-
tions (f4, f7, f11, f13, f16). SaCIDE-r algorithm was not
defeated on any test functions. On the rest 5 test functions,
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FIGURE 7. The technical strategy block diagram of the proposed
method.

TABLE 2. Summary of the selected 10 CEC2013 test functions.
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TABLE 2. (Continued.) Summary of the selected 10 CEC2013 test
functions.

there was no significant difference between the presented
method and JADE. In general, the proposed method may
have a more powerful global searching capability compared
with some state-of-the-art DE algorithms on some bench-
mark functions. Next, all the median convergence curves of
the compared algorithms on the test functions are plotted
in Fig. 8.

V. APPLICATION FOR SCHEDULING SHIPBOARD
MICROGRID USING SaCIDE-R
In this section, the authors would like to give the steps of
applying the proposed SaCIDE-r algorithm for economic
scheduling of a shipboard microgrid. As mentioned above,
it is noticed that this investigation focuses on a day-ahead
economic scheduling with two objectives on board. Before
running the optimizing program in the EMS, the output power
of WT, PV and load are forecasted by other algorithms.
Assume that there is no uncertainties between the forecasted
power and the real power. In order to minimize the costs of
fuel consumption and the battery system, the power genera-
tion from WT and PV should be used preferentially to meet
the demand of loads at any time. If the sustainable power is
not high enough for the load demand, then the rest required
power should be supplied by the battery system or the DG.

To make the optimization problem easy to solve, a single
solution is defined as follows:

X = [PB1,PB2, . . . ,PBt , . . . ,PB (23)

PBi =

{
Pd if PBi > 0
Pc otherwise

(24)

In this paper, it means the battery system is discharging
when PBt is a positive value, and it denotes that the battery
system is charging when PBt is a negative value. A time t ,
the searching range and initializing range of X should be
restricted within [−PmaxB , PL(t)−PPV (t)−PWT (t)]. Then the
rest power should be balanced by adjusting the output power
of the DG. Such a solution X will be evaluated to calculate
the fitness values. The steps of applying SaCIDE-r for multi-
objective economic scheduling of a shipboard microgrid are
listed as follows:
Step 1: Load the power of PV, WT and required loads in

the next 24 hours.
Step 2: Set the parameters of the simulation, such as NP,

Max_FEs, independent run times and simulation scenarios.
Step 3: The population is initialized within the searching

ranges and evaluated. Each vector should be evaluated for
each objective according to Eq. (5-6).
Step 4: For each donor vector, the mutation operation is

conducted according to Eq. (15).
Step 5: For each mutant vector, the crossover operation is

conducted according to Eq. (18).
Step 6: For each trial vector, the variable should be

restricted within the searching domain at each dimension.
Step 7: For each trail vector, two fitness values of the two

objectives should be calculate. The donor vector is replaced
by the generated trail vector when both the two fitness values
are better. Otherwise, stgG is added by 1.
Step 8: The control parameters of the proposed method

should be adapted according to Eq. (20-21).
Step 9: If stgG is bigger than stgmax , then the re-

initialization is triggered; otherwise, go to the next step.
Step 10: If the termination criteria are met, then output

the best solution and plot the Pareto front; otherwise, go
to Step 4.

To show how to apply SaCIDE-r for shipboard microgrids
and other large scale microgrids, the block diagram is given
below:

VI. CASE STUDIES
In this paper, the presented SaCIDE-r is applied for multi-
objective economic scheduling of a shipboard microgrid. For
a specific ship, there are two typical working conditions
which are the harbor mode and the voyage mode. In the har-
bor mode, load demand changes frequently and dramatically.
Whereas, in the voyage the load demand barely changes. All
the simulations are run under islanded mode. The parameters
of the involved shipboardmicrogrid are shown in Tab. 4 and 5.
The capacity settings come from a hybrid microgrid in a
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FIGURE 8. The median convergence curves of the involved algorithms on CEC test functions with
D = 30.
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TABLE 3. Compared results of competitors and SLCIDE algorithm on test
functions with D = 30.

TABLE 4. Parameters of the renewable generators.

TABLE 5. Parameters of the battery system.

barge, which mixes WT, PV, DG and the battery system to
reduce the fuel cost and emissions.

The structure of the shipboard microgrid was displayed
in Fig. 1. The math model of the objective functions and
the corresponding constraints were given in Section II-III.
For day-ahead economic scheduling of shipboard microgrid,

FIGURE 9. The block diagram of the proposed method.

T is set to 24 in this study. For DE algorithms, there are
three control parameters, which are F , Cr and NP. For many
DE variants, NP is usually fixed to a recommended value.
In this paper, NP is set to 100 in numerical simulation and
case studies. Such a setting is a widely used value. F and Cr
are adapted according to Eq. 20-21. All the simulations are
run in the same environment whichwas adopted in Section IV.

A. CASE 1: HARBOR MODE
In harbor mode, ships usually need frequent maneuverings,
resulting in a frequent change of load. In this case, the fore-
casted power of WT, PV and load in 24 hours are plotted
in Fig. 10.

For comparison, we conducted the simulation over 31 inde-
pendent times by using four different algorithms, which
are Multi-objective Differential Evolution (MODE) [71],
Multi-objective Harmony Search (MOHS) [72], the well-
known NSGA-II [73] and the proposed SaCIDE-r . For each
independent run, the Max_FEs is set to 10000. Some simula-
tion results are shown in Fig. 11 to 13.
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FIGURE 10. The forecasted power of PV, WT, and load in case 1.

FIGURE 11. Comparison of the best solutions obtained by using different
algorithms.

FIGURE 12. The median convergence curves of the involved algorithms
for the objective of the battery cost.

All best solutions, which are found by using four algo-
rithms run over 31 independent times, are plotted in the
above figure. The spots marked with black color constituted
a near-optimal Pareto front. Besides, the solutions found

FIGURE 13. The generated power of the battery and DG by using
SaCIDE-r for one run.

FIGURE 14. The forecasted power of PV, WT, and load in case 2.

by SaCIDE-r were more concentrated than other solutions.
That means the proposed method has a more stable search-
ing behavior. Compared with other algorithms, the proposed
method is more suitable for this application.

It can be seen from Fig. 12 that the proposed algorithm
has a more satisfying convergence curve than the other algo-
rithms. During the evolution, the proposed method converged
very fast. Besides, a sustainable searching behavior was dis-
played. When the iteration is bigger than 5000, none of
the other algorithms could find better solution with smaller
fitness value than SaDIDE-r . Fig. 13 shows the solution of the
battery system and DG by using SaCIDE-r for a single run.
It could be observed that in the time period t= 12 – 14 h PB(t)
is negative and PDG(t) is zero. At this time, the generation of
PV and DG is more than the load demand, and the battery
system is charging. Due to the relatively high and frequently
changing load, the output power of DG is relatively high,
resulting in a high fuel cost. Such a simulating result means
that the supply power of DG is indispensable, especially when
the renewable power sources could not afford the demand
of loads in shipboard microgrids. From the above simulation
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FIGURE 15. Comparison of the best solutions obtained by using different
algorithms.

FIGURE 16. The median convergence curves of the involved algorithms
for the objective of the battery cost.

results we can see, the proposed method has demonstrated the
effectiveness for the multi-objective economic scheduling of
a shipboard grid.

B. CASE 2: VOYAGE MODE
In voyage mode, the load demand of ships is usually
fixed with a very small fluctuation. In this case, the fore-
casted power of WT, PV and load in 24 hours are plotted
in Fig. 14. Also, the compared simulation results are shown
in Fig. 15 to 16.

From the above figure, the performances of the four algo-
rithms all deteriorated, resulting in a more scattered locations
of the spots. In this case, the optimization problem seems
harder than the former case, because the algorithms could
not find the clear Pareto front. Nevertheless, the spots marked
with black color still have better locations than other spots.

From the above figures we can see, the convergent perfor-
mance of the proposed method is still better that the other
algorithms. When the iteration is over 6000, none of the com-
petitors has a better fitness value than the proposed method.

FIGURE 17. The generated power of the battery and DG by using
SaCIDE-r for one run.

Compare with the first case, the fitness value of this case is
bigger than the former, showing a more difficult optimization
problem. Besides, due to the changes of the load demand,
the output power of the battery and DG behave differently.
In this simulation case, the sum of the generation power of
PV and WT is often bigger than the load demand, resulting
in more charging process for the battery system. And, the
output power of DG has been much reduced compared with
the first case, resulting in a much less fuel cost. It is also
demonstrated that the total costs of shipboard microgrids rely
on the demand of load and changes of the climate.

VII. CONCLUSION
With the growing demand for emission reductions and fuel
efficiency improvements, alternative energy sources and
energy storage technologies are becoming popular in ship
microgrids. In order to balance the two non-compatible objec-
tives, a new differential evolution variant was proposed to
solve the optimization problem. In this algorithm, a CI-based
mutation operator was proposed by mixing some promis-
ing donor vectors in the current population. Besides, a self-
adaptive mechanism which was developed to avoid intro-
ducing extra control parameters. Further, to avoid being
trapped in local optima, a re-initialization mechanism was
developed. Then, we have evaluated the performances of
the proposed SaCIDE-r approach by studying some numer-
ical optimization problems of CEC 2013 with D = 30,
compared with seven state-of-the-art DE algorithms. From
the simulation results, the proposed method showed better
searching accuracy and faster convergence speed on various
optimization problems. With the observations on compre-
hensive experimental results of the economic scheduling of
shipboard microgrid in different cases, the proposed algo-
rithm can be successfully applied for this problem. Compared
with other multi-objective heuristic algorithms, SaCIDE-r
has performed more concentrated Pareto front and faster
convergence speed. Meanwhile, both of the fuel cost and
the battery cost were minimized. Thus, we may conclude
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that, for multi-objective economic scheduling of a shipboard
microgrid, SaCIDE-r is a feasible and acceptable solution.
In future work, the proposedmethod needs more verifications
on other land-based microgrids with more complicated opti-
mizing objectives.
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