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A B S T R A C T

Continuous recordings of significant wave height (SWH) are of significant importance to facilitate the devel-
opment and application of wave energy assessments. However, SWH recording is often interrupted by a variety 
of factors, including severe weather, apparatus failure, etc. The presence of short-term intermittent and long- 
term continuous missing values is recognized as a significant challenge for the accurate analysis and energy 
assessment of wave data. To effectively fill in the short- and long-term missing values simultaneously, a hybrid 
Kalman smoothing (KS) − Long Short-Term Memory (LSTM) model, which is applied to fill in SWH for the first 
time, is proposed. Initially, the short-term intermittent missing values, with missing ratios of 10%-50%, are filled 
by using the KS method, achieving a root mean square error (RMSE) as low as 0.082. Based on short-term missing 
values addressed by KS, the LSTM model is introduced to effectively predict the long-term continuous missing 
values. The maximum RMSE reduction rate of KS-LSTM is reduced by 49.6%, 59.4%, and 57.8% compared to KS- 
ARIMA, LSTM, and ARIMA, respectively, within the short-term intermittent missing ratios of 10%-50%. The 
maximum reduction in mean square error (MSE) is observed to be 71.4%, 83.6%, and 82.1%. Similarly, the 
maximum reduction in mean absolute error (MAE) is 74.6%, 61.1%, and 55.5%. The lowest prediction RMSE of 
long-term missing values by KS-LSTM is only 0.091, which demonstrates that the effectiveness of filling in both 
short-term and long-term missing values simultaneously by the KS-LSTM.

1. Introduction

Ocean is recognized to possess substantial potential for generating 
renewable energy sources, such as wave energy, tidal energy, and 
thermal energy of the ocean [1,2]. With the increasing demand for 
reliable energy production in human societies and the expansion of 
renewable energy, infrastructure, researchers have conducted several 
useful explorations of ocean energy applications [3]. Among these, wave 
energy, as a form of renewable energy technology (RET) [4], has been 
particularly noted for its high energy density [5], better predictability 
[6], and notable environmental friendliness [7]. The research and 
development of wave energy are closely related to marine meteorolog-
ical parameters such as Significant Wave Height (SWH), Mean Wave 

Direction (MWD), Dominant Wave Period (DPD), etc. It is recognized 
that SWH can intuitively reflect the characteristics and kinematic 
properties of waves and plays an important role in the comprehensive 
assessment of wave energy resources and power generation [8,9]. 
However, SWH time series observation records are often interrupted or 
missing due to unfavorable climatic conditions and equipment failures 
[10,11], posing a serious challenge to the reliability of wave energy 
studies. Therefore, the effective recovery of missing values in SWH time 
series records is regarded as important for advancing wave energy 
research and resource assessment.

According to related studies, missing values of SWH are normally 
identified as having two distinct forms: Short-term missing values are 
generally within 10, such as 4 to 5 small items of magnitude [12]. Long- 
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term missing values usually represent a continuous period of 1 month 
(about 30 h) or more [13]. The prevailing challenge lies in addressing 
the coexistence of short- and long-term missing values within time series 
data. Short-term intermittent missing values are often omitted directly, 
which may lead to the loss of critical information [14,15]. To address 
this issue, researchers have utilized the interpolation method, which 
captures temporal information in the data, to fill in the missing values. 
Linear, quadratic, and cubic interpolation techniques have been 
employed [16] to fill the SWH intermittent missing values. By com-
parison, it was found that the linear interpolation methods were able to 
provide a better fit to the data. Quinteros et al [17] attempted to 
reconstruct air quality datasets with data loss greater than 20 % using 
multiple interpolation techniques. Cubic spline interpolation was used 
by Abdullah et al [18] to fill approximately 20 % of the missing values in 
3,000 wave height data points at the Karawang station. Furthermore, to 
compensate for the shortcomings of the interpolation method, which 
struggles to capture the dynamic change pattern of intermittent missing 
values, effective dynamic system state estimation has been carried out 
by researchers utilizing Kalman smoothing (KS) [19]. By reducing sys-
tem noise and integrating past and current observations, KS can 
dynamically fill varying missing values in a time series [20]. For 
example, KS was utilized by Umar and Gray [21] to fill the water level 
data with a missing ratio of 5 % at the Kainji water station on the Niger 
River, achieving an average root mean square error (RMSE) of 13.61. 
Terms of up to more than 40 h in snow depth sensor data were filled 
using KS by Avanzi et al [22]. The research results demonstrate that KS 
has been widely used to evaluate missing data in snow depth sensors, 
water level data, and other fields with favorable outcomes. However, the 
effectiveness of KS in filling SWH missing values still needs further 
verification.

In the research of long-term continuous missing values filling, the 
essence of this filling process is identified as the forecasting of time series 
data. Long-term missing values are typically predicted using physical 
and data-driven models by researchers [23]. In terms of physical models, 
the SWAN-SWASH model was utilized by Umesh and Behera [24] to 
predict SWH off the east coast of India using a 1 m grid resolution. The 
wave generation in the Black Sea was simulated by Soran et al [25] using 
the third-generation wave model WAVEWATCH III. Although physical 
models that rely on energy balance equations provide accurate results 
[26], they typically require substantial computational resources and 
reliable wind field data as inputs, which limits their applicability for 
rapid forecasting. Therefore, fast and reliable methods for predicting 
long-term continuous missing values are provided by machine learning- 
based data-driven models [27]. Among these, machine learning methods 
(ML), such as Artificial Neural Networks (ANN) [28], Support Vector 
Machines (SVM) [29] and Random Forests (RF) [30] have been widely 
employed in the field of coastal and marine engineering. ML models, 
including the Bidirectional Gated Recurrent Unit (BiGRU) and Cressman 
analysis, were used by Wang et al [31] to recover 450 missing wave 
height data points from a buoy station. A Genetic Programming (GP)- 
based model [32] was employed to predict a missing consecutive month 
of data in the Gulf of Mexico. The ML methods described above are 
capable of filling in both short-term and long-term missing data based on 
temporal and spatial correlations. However, when the amount of 
available data in the time series is insufficient, the accuracy of methods 
based on temporal correlation in recovering missing values could be 
drastically reduced.

To address above issues, studies on SWH missing values recovery 
using classical time series methods, such as the autoregressive (AR) 
model [33] and moving average (MA) model [34], have been conducted 
by researchers as another data-driven domain approach. Long-term 
missing values in time series were predicted using an autoregressive 
moving average (ARMA) model by Ferreiro [35]. However, due to the 
complex nonlinear characteristics of SWH time series data, the predic-
tive performance of models may be degraded by relying on linear ex-
pressions and data smoothing assumptions [36]. The effectiveness of the 

Long Short-Term Memory (LSTM) model in capturing nonlinear features 
in time-series data and its excellent time-series autoregressive ability 
[37] have been demonstrated across various fields, such as speech 
recognition, natural language processing, and image recognition [38]. 
In research on SWH, SWH data for 12 consecutive hours were predicted 
by Yao and Wu [39] using an extended LSTM with a multistep training 
set, resulting in a reduction in prediction error by 52.83 %. The wave 
height of the southwest Atlantic Ocean was predicted with an accuracy 
of nearly 87 % using LSTM [40]. Although some progress has been made 
in SWH prediction based on LSTM, the model’s effectiveness in filling 
simultaneous short-term and long-term missing values of SWH still ne-
cessitates further in-depth study.

In summary, considerable explorations have been accomplished by 
researchers in recovering short-term intermittent and long-term 
continuous missing values in time series recordings. However, the 
research on simultaneously filling both types of missing values 
mentioned above in SWH is still in its early stages. To address this, a 
novel hybrid KS-LSTM model is proposed in this work, which firstly 
employs KS to efficiently fill intermittent short-term missing values. 
Subsequently, on the basis of the time series after the filling of short- 
term intermittent missing values, LSTM is utilized to realize the effi-
cient filling of long-term continuous missing values. To evaluate the 
generalizability of the proposed hybrid model, datasets with five 
different missing ratios, including 10 %-50 %, are randomly constructed 
from five different SWH datasets from the actual public buoy stations. 
Higher applicability and prediction accuracy in filling short- and long- 
term concurrent missing values in variable environments and different 
data characteristics are demonstrated by the KS-LSTM model, as 
compared and analyzed with other models. The overall structure of the 
paper is organized as follows: Section 2 outlines the research method-
ology and the evaluation indicators to fill in missing values. In Section 3, 
the study area, materials, application and the creation of datasets with 
different ratios of missing SWH are described for the five public stations. 
Section 4 is dedicated to the discussion and analysis of the prediction 
results. Finally, the content and contributions of this paper are sum-
marized in Section 5.

2. Research methods and evaluation indicators for filling in 
missing values

2.1. Kalman smoothing

The theoretical framework of Kalman smoothing (KS) is founded on 
the recursive estimation of the system state and applies to both linear 
and nonlinear systems [41,42]. In the process of filling in missing data 
values in the SWH time series, the filling state is estimated by KS using 
current and past observations. Through successive applications of KS 
prediction, updating, and smoothing, a coherent and smooth time series 
is generated, effectively filling the short terms of missing data points in 
SWH. This method is realized by performing a series of steps in the 
Kalman filtering (KF) and KS process [43–45], which are specified 
below.

Step 1 Forecasting
State prediction: 

x̂k|k− 1 = Fk ̂xk− 1|k− 1 +Bkuk (1) 

Covariance prediction: 

Pk|k− 1 = FkPk− 1|k− 1FT
k +Qk (2) 

Where, ̂xk|k− 1 represents the state at the time k, predicted using the in-
formation available up to time k − 1. The transfer matrix is denoted by 
Fx, and the control input matrix is denoted by Bk. The control vector is 
represented by uk, and the prediction covariance matrix is denoted by 
Pk|k− 1. Finally, the noise covariance matrix of the process is denoted by 
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Qk.
Step 2 Update
Kalman gain: 

Kk = Pk|k− 1HT
k
(
HkPk|k− 1HT

k + Rk
)− 1 (3) 

State update: 

x̂k|k = x̂k|k− 1 +Kk
(
zk − Hkx̂k|k− 1

)
(4) 

Covariance update: 

Pk|k = (I − KkHk)Pk|k− 1 (5) 

Where, Kk represents the Kalman gain; Hk denotes the observation 
model matrix; zk is the actual measurement at the time k; Rk is the 
observation noise covariance matrix; and I stands for the identity matrix.

Step 3 Backward Correction
Smoothing state estimation: 

x̂k|N = x̂k|k + Jk
(
̂xk+1|N − Fk x̂k|k

)
(6) 

Smoothing covariance estimation: 

Pk|N = Pk|k + Jk
(
Pk+1|N − Pk|k− 1

)
JT

k (7) 

Where, N represents the final time step; x̂k|N and Pk|N are the smoothed 
state estimate and covariance estimate, respectively. Jk = Pk|kFT

k P− 1
k|k− 1 

denotes the smoothing gain.

2.2. ARIMA

ARIMA (Autoregressive Integrated Moving Average Model) is a 
classical statistical model for time series forecasting [46] that has been 
demonstrated to be highly efficient in short-term forecasting [47]. Due 
to its effectiveness in revealing seasonal variations and long-term trends, 
ARIMA will be used to address the issue of long-term continuous missing 
values in SWH time series records. Comprising three main components: 
the autoregressive (AR) term, the differencing (I) term, and the moving 
average (MA) term, the ARIMA model is typically as denoted ARIMA (p, 
d, q). Its mathematical expression is outlined in references [48–50]. 
(

1 −
∑p

i=1
∅iLi

)

(1 − L)dyt =

(

1 +
∑q

i=1
θtLi

)

εt (8) 

where, L is the lag operator; d is the order of differencing; p is the order 
of the autoregressive part; q is the order of the moving average part; ∅i 
are the coefficients of the autoregressive terms; θi are the coefficients of 
the moving average terms; εt is the error term at time t.

2.3. LSTM

LSTM is a deep learning network model that is primarily employed to 
solve time series prediction problems. Due to its ability to capture 
complex non-linear patterns and the long-term dependencies inherent in 
such data, LSTM has significant advantages in non-linear time series 
prediction. The challenge of gradient vanishing is overcome in LSTM by 
integrating of forgetting, input, and output gates, along with unit states. 
These gates allow the retention of newly acquired information while 

Fig. 1. Cell structure of LSTM.

Fig. 2. KS-LSTM flow chart to fill in the missing values of SWH.
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preventing critical data loss [51,52]. The structure of LSTM is illustrated 
in Fig. 1, with the formulation provided below. 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ft = σ
(
Wf ⋅[ht− 1, xt ] + bf

)

it = σ(Wi⋅[ht− 1, xt ] + bi )

Zt = tanh(Wz⋅[ht− 1, xt ] + bz )

Ct = ft*Ct− 1 + it*Zt
ot = σ(Wo⋅[ht− 1, xt ] + bo )

ht = ot*tanh(Ct)

(9) 

As shown in the above equations, the weight matrix 
(
Wf ,Wi,Wz,Wo

)
, 

the bias vector 
(
bf ,bi,bz,bo

)
, and the activation function tanh are used to 

represent the forgetting gate ft, input gate it, output gate ot, and cell state 
Ct in the LSTM.

Depending on research needs, an LSTM network model implemented 
within the TensorFlow deep learning framework is used in this work. An 
Adam optimizer with a learning rate of 0.001 is used, and the model is 
configured with 20 hidden layers, each comprising 50 neurons. To 
mitigate model overfitting and enhance generalization capability, a 
culling layer with a 20 % probability of deactivation for each neuron is 
added. The training process is completed after 2000 epochs, achieving a 
mean squared error (MSE) of 0.0254.

2.4. The proposed model (KS-LSTM)

This work aims to construct a novel KS-LSTM model that fills the 
short- and long-term missing values in the SWH time series simulta-
neously and efficiently. As depicted in Fig. 2, the process of the proposed 
KS-LSTM model is mainly divided into three stages, which are described 
as follows.

Step 1 KS-based short-term missing values filling: To assess the 
impact of datasets with varying missing ratios on the model’s filling 
performance, random missing ratios ranging from 10 % to 50 % are 
introduced in this work, forming several datasets characterized by short- 
term intermittent missing values at different ratios. Two different 
treatments are adopted for these datasets, as one involves filling the 
datasets for each missing level using the KS method, and the other in-
volves ignoring the missing ratio and directly deleting all missing values.

Step 2 LSTM/ARIMA-based prediction of long-term continuous 
missing values: After the intermittent missing values are filled using 
the KS method, the second phase involves a study on predicting long- 
term continuous missing values using LSTM and ARIMA. And then, 
the long-term missing values filling performance by using the LSTM/ 
ARIMA without KS will be conducted to assess the effectiveness of the KS 
filling technique. The results reveal the impact of filling in short-term 
missing values on the improvement of accuracy in predicting 

continuous long-term missing values.
Step 3 Comparison of model inputs and results: The third stage 

involves a comprehensive assessment of the KS-LSTM performance in 
filling datasets with different ratios of missing values at different buoy 
stations. The generalizability and optimal application scenarios of the 
KS-LSTM are determined by comparing its performance in addressing 
both short- and long-term missing values and its performance with 
traditional methods such as LSTM or ARIMA independently.

2.5. Evaluation indicators of KS-LSTM model for filling in SWH missing 
values

To comprehensively evaluate the effectiveness of the KS-LSTM model 
on the missing values filling performance, three evaluation indicators 
are introduced in this study, including root mean square error (RMSE), 
mean square error (MSE) and mean absolute error (MAE). The RMSE is 
employed to quantify the deviation between predicted and actual 
values. It is calculated as the square root of the mean of the squared 
errors. A lower RMSE value indicates that the model’s prediction ac-
curacy has been improved [53]. The MSE is defined as the average of the 
squared errors, reflecting the overall prediction performance of the 
model by emphasizing larger errors. A smaller MSE indicates that the 
model’s accuracy has been enhanced [54]. The MAE is calculated as the 
average of the absolute differences between the predicted and actual 
values, reflecting the average magnitude of error. MAE is used to 
directly assess the degree of deviation between predicted and true 
values, with smaller values indicating better accuracy [55]. Assuming xi 
represents the true values, yi represents the predicted values, and m is 
the sample size. The explicit mathematical formulas for these evaluation 
indicators for filling errors are as follows. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m
∑m

i=1
(xi − yi)

2
√

MSE =
1
m
∑m

i=1
(xi − yi)

2

MAE =
1
m
∑m

i=1
|xi − yi|

(10) 

3. Study areas and materials

3.1. Study area and SWH data

The SWH data in this study are obtained from the buoy data provided 

Fig. 3. (a) Geographic location of the selected buoys. (b) Pearson coefficient matrix between buoys.
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by the National Data Buoy Center website of the United States. To 
validate the effectiveness of the hybrid model, buoys 46005, 46006, 
46013, 46025, and 46,059 are selected based on spatial correlation, 
which covers different geographical areas of the west coast of the US, 
from Washington State to Southern California, so as to better increase 
the representativeness and comprehensiveness of the methodology in 
this research The SWH data are accessed on October 16, 2023, and Fig. 3
(a) shows the specific geographical location map of the buoys. The ID, 
coordinates, station code (NDBC code), water depth, and statistical 
characteristic information (minimum, maximum, mean, variance, data 
amount) [56] of the buoys are shown in Table 1.

The water depths of the buoys range from approximately 100–1000 
m to 2500–5000 m. To verify that different characteristic patterns 
exhibited by the buoys, the Pearson correlation coefficient is calculated 
between the buoys using SWH data over a common time period. As 
shown in Fig. 3(b), the numbers within the squares represent the 
Pearson coefficients, with more purple hues indicating larger 

coefficients. The red check marks denote a P-value less than 0.05 (the 
statistical significance level), indicating that the correlations between 
the buoy pairs are statistically significant based on the statistical test.

Fig. 4 visualizes the time series of SWH at five buoy sites from 
January 2022 to April 2023. Each sub-figure shows the change in wave 
height at the corresponding site during this period, with the orange 
dashed lines marking the reference wave heights of 2 m and 4.5 m, 
respectively. The SWH in Buoy ID1 is vacant from 13:00 on February 13, 
2022, to 9:00 on May 20, 2022, while the range of missing values at 
other buoys is small. The SWH of buoys ID1, ID2, ID3, and ID5 are 
mainly concentrated between 2 m and 4.5 m, with wave height 
increasing significantly in winter. The SWH of buoy ID4 is generally low, 
mainly concentrated below 2 m, and the wave height remains relatively 
stable throughout the year. The frequency histogram in Fig. 5 further 
shows the overall distribution characteristics of SWH. Different color 
indicates the intensity of the frequency different SWH appears, from 
light pink (low distribution frequency) to dark purple (high distribution 

Table 1 
The information of buoys and the SWH statistical characteristics.

ID Site code Location Min (m) Max (m) Mean (m) Std (m) Depth (m) Data amount

1 46,005 (46◦8′36″ N 131◦5′24″ W) 0.65 11.00 2.69 1.39 2821 13,418
2 46,006 (40◦45′52″ N 137◦22′37″ W) 0.78 12.50 2.91 1.42 4347 15,322
3 46,013 (38◦14′5″ N 123◦19′1″ W) 0.49 9.59 2.18 0.98 127 14,555
4 46,025 (33◦45′19″ N 119◦2′42″ W) 0.39 6.15 1.19 0.53 890 17,615
5 46,059 (38◦4′9″ N 129◦58′34″ W) 0.82 11.70 2.50 1.20 4640 13,040

Fig. 4. Time series plot of significant wave height for five buoys.
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frequency). The SWH distribution frequency for buoys ID1, ID2, and ID5 
are concentrated between 1 and 4 m, with wave heights above 4 m being 
relatively rare. Compared to these three buoys, the SWH distribution for 
buoy ID3 is observed to be slightly wider, with a higher frequency of 
SWH between 4 and 6 m. The peak SWH distribution frequency, 
exceeding 4000, is recorded at buoy ID4, indicating that waves of a 
certain height are very frequently encountered at this location.

3.2. Simulation of missing datasets

Since actual values for the missing data are unavailable, directly 
comparing the filled data with real values becomes infeasible. For this 
reason, datasets with various missing ratios are artificially constructed 
to simulate potential missing patterns in real SWH records. Specifically, 
based on the 16 months SWH sample series of complete records from 
buoys ID1 to ID5, five different ratios of SWH missing values (NA), with 
range of 10 %-50 %, are randomly introduced to simulate the actual 
short-term missing values of SWH.

Short intermittent missing values are defined as situations where the 
number of continuous missing values in a data set does not exceed 10 h. 
Long-term missing values are only considered when the missing dura-
tion extends to 120 continuous hours in this research. This definition 
helps in identifying and analyzing the patterns and characteristics of 
short-term intermittent missing values in the data, and in avoiding 
confusion between short-term missing values and long-term continuous 
missing values during processing and prediction. The short-term sizes of 
randomly generated missing values and their frequency of occurrence 
under different missing ratio conditions are depicted in Fig. 6 to visu-
alize the data missing patterns. In these graphs, the vertical coordinates 
are sorted by term size (NAs in a row). The orange bar in the graphs 

represents the number of times a missing interval of a particular size 
occurs in the data, while the green bar indicates the number of missing 
values for each short-term interval Fig. 6(a) presents four different sizes 
of missing intervals in the dataset with 10 % missing ratio. The distri-
bution of different short-term is shown in Fig. 6(b)-(e), where the fre-
quency of 1NA-short-term is the most prominent. Fig. 6(b) and (e) 
further illustrate the short-term containing larger short-term sizes, such 
as 10 missing values respectively. However, these larger short-terms 
represent only a small portion of the dataset, 1NA-short-term is the 
most prevalent among the missing value types.

4. Results and discussion

4.1. Performance of short-term missing values filling

To explore the effectiveness of KS in filling short-term intermittent 
missing values in SWH time series records, the data with five different 
missing ratios created previously are filled and analyzed compared to 
the cubic spline interpolation (CSPI) method. The evaluation indicators 
of the KS model and the CSPI method, after filling in the short-term 
missing values, are presented in Table 2.

As shown in Table 2, the maximum RMSE values for the KS and CSPI 
are recorded at 0.201 and 0.276, respectively. The MSE range for the KS 
is maintained between 0.007 and 0.041, while for the CSPI ranges be-
tween 0.012 and 0.076. The maximum MAE of KS and CSPI are noted at 
0.137 and 0.189, respectively. It is observed that KS consistently 
maintains higher filling accuracy under different missing ratios and at 
different buoy stations compared to the CSPI method. Additionally, the 
error metrics for the KS and CSPI methods exhibit a tendency to remain 
relatively stable as the missing ratio increases. This stability can be 

Fig. 5. Histogram of the distribution frequency of different SWH in the five buoys.
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attributed to the favorable data distribution characteristics and the 
inherent robustness of the KS, which enables it to maintain low error 
levels even at high missing ratios. These findings indicate that the KS 
method is most effective when the data amount is substantial and the 
missing ratio is moderate, as observed at buoy ID4.

The error distribution diagrams in Fig. 7 are presented in the form of 
box plots in a unified manner. Each color in the pair group represents a 
specific combination of data pair. For instance, “10 %NA. CSPI” or “30 % 
NA. KS” indicate datasets with 10 % missing ratio filled by using CSPI, or 
30 % missing ratio filled by using KS, respectively. As the missing ratio 
increases from 10 % to 50 %, the error distribution is gradually 
expanded, indicating that with a higher missing ratio, greater errors and 
increased data dispersion are observed. When the same missing ratio is 
considered, it is observed that the box plot for the KS method is shorter 
than that for CSPI, and the median error and overall distribution are 
found to be lower than those for CSPI. This suggests that the error dis-
tribution of data points after being filled by the KS method is more 
concentrated, while the data points filled by CSPI are found to contain 
more outliers. The effectiveness of the KS method in filling short-term 

missing values is thereby further demonstrated.

4.2. Performance of long-term missing values filling

Based on the filling of datasets with different short-term missing 
ratios mentioned above, research on the prediction ability of SWH long- 
term continuous missing values is conducted in this section. It should be 
noted that, given the similarity in applicability and validity of the SWH 
data obtained at buoys ID1-ID5, and for the sake of clarity in the dis-
cussion process, only buoy ID1, which contains 10 % missing ratio, and 
buoy ID5, which contains 50 % missing ratio, are used as examples to 
display the detailed analysis results. Finally, the predictive performance 
of different forecasting methods is compared and analyzed at three 
buoys under conditions where the SWH missing ratios range from 10 % 
to 50 %. To ensure the effectiveness and generalization ability of the 
model, the datasets are divided into three parts: 60 % of the data is used 
as a training set, 30 % of the data is used as a test set, and the remaining 
10 % is used as a validation set. This division helps us comprehensively 
evaluate the performance of the model on different data subsets and 

Fig. 6. SWH missing values distribution map: The data distribution with (a) 10% missing ratio at buoy ID1, (b) 20% missing ratio at buoy ID2, (c) 30% missing ratio 
at buoy ID3, (d) 40% missing ratio at buoy ID4, (e) 50% missing ratio at buoy ID5.

Table 2 
The evaluation indicators for spline-filled and KS-filled errors.

Buoy 
code

Missing ratio CSPI-filled values KS-filled values Filling amount

RMSE MSE MAE RMSE MSE MAE

ID1 10 % 0.243 0.059 0.167 0.179 0.032 0.124 1342
ID2 20 % 0.276 0.076 0.187 0.201 0.041 0.137 3064
ID3 30 % 0.199 0.040 0.139 0.144 0.021 0.102 4366
ID4 40 % 0.109 0.012 0.075 0.082 0.007 0.057 7046
ID5 50 % 0.240 0.057 0.161 0.180 0.033 0.124 6520
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ensure the stability and reliability of the model in practical applications.

4.2.1. Prediction results with 10 % missing ratio at buoy ID1
Fig. 8 illustrates the distribution of observed values and filled values 

for both short- and long-term across the entire time series in cases of a 
10 % missing ratio. In Fig. 8, the blue dots on the left part of the time 
series are the actual observed values. The red dots are used to represent 
short-term intermittent missing values filled by KS. The distribution of 
these dots on the vertical axis demonstrates the non-linear characteris-
tics of the SWH and the volatility of the filled values. The prediction 

range of long-term missing values is labeled on the right side of Fig. 8(a). 
Fig. 8(b) displays the predicted SWH long-term continuous missing 
values using four models, along with comparison among the results of 
these models and the actual observed values. The inset in the upper left 
corner of the figure shows a magnification of 120 consecutive hours of 
long-term missing values to facilitate the observation of details. It fol-
lows that although ARIMA can capture the overall trend prediction of 
SWH, its ability to capture extreme values is limited and prone to delays 
and prediction errors when faced with rapid and large changes. By 
incorporating KS, the overall trend tracking of KS-ARIMA is made 

Fig. 7. Boxplot of absolute error distributions for missing ratios (10%-50%) for the five buoys SWH data calculated using KS and CSPI.

Fig. 8. Filling plot for short- and long-term missing values: (a) Complete time series plot of SWH missing values filled by ARIMA, KS-ARIMA, LSTM, and KS-LSTM 
with 10% missing ratio at buoy ID1, (b) Zoomed-in plots of prediction of long-term missing values, and (c) Box plots of absolute prediction errors for each model.
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smoother, particularly in areas with significant data fluctuations. 
However, due to the linear limitations of ARIMA, KS-ARIMA cannot 
fully capture rapid changing peaks and troughs when processing com-
plex data. In contrast, excellent trend-following capabilities and stability 
are exhibited by KS-LSTM, especially in continuous fluctuating data 
segments. While LSTM generally simulates wave peaks and troughs 
effectively, a delay in its response is still present in extreme or rapidly 
changing situations. When combining the long-term dependency pro-
cessing capabilities of LSTM with the error correction advantages of KS, 
the KS-LSTM model is rendered the most outstanding in terms of 

dynamic response capabilities. It not only tracks the overall trend of the 
data accurately but also efficiently captures the peaks and troughs.

The box plot in Fig. 8(c) further demonstrates the performance 
comparison of the four models in the predicting absolute error distri-
bution. KS-LSTM is shown to have the lowest error, recorded at 0.112, 
followed by KS-ARIMA and LSTM, and the ARIMA exhibiting the highest 
median error and the widest error range. The research reveals that sig-
nificant improvements in the overall prediction performance of the 
models are achieved when KS is combined (KS-ARIMA and KS-LSTM), 
particularly in capturing the nonlinear characteristics of the SWH. 
Compared to KS-ARIMA, KS-LSTM displays a more significant advantage 
in handling dynamic changes of peaks and troughs. It can be verified 
that the prediction stability and accuracy of the model for long-term 
continuous missing values can be significantly enhanced by incorpo-
rating KS.

As observed from Table 3, the lowest prediction error is achieved by 
KS-LSTM when the missing ratio is 10 %, with RMSE, MAE, and MSE 
recorded as 0.168, 0.134, and 0.028, respectively. In contrast, RMSE, 
MAE, and MSE of KS-ARIMA are found to be 0.273, 0.206, and 0.074, 
respectively. The RMSE values when only LSTM and ARIMA are used are 
noted to be 0.241 and 0.304, respectively. As the missing ratio increases, 
the prediction error is also observed to increase. When the missing ratio 
reaches 50 %, the RMSE of KS-LSTM is 0.187, while that of KS-ARIMA 
rises to 0.371. As illustrated in Fig. 9, reductions in RMSE, MAE, and 
MSE of KS-LSTM predictions, compared with using only LSTM, are 
observed to reach up to 59.4 %, 61.1 %, and 83.6 %, respectively. 
Compared to use only ARIMA, reductions in RMSE, MAE, and MSE of KS- 
LSTM predictions are recorded as up to 57.8 %, 55.5 %, and 82.1 %, 
respectively. Furthermore, reductions in RMSE, MAE, and MSE of KS- 
LSTM predictions, compared with KS-ARIMA, are noted to be up to 
49.6 %, 74.6 %, and 46.8 %, respectively. The KS-LSTM model is 
demonstrated to perform significantly better than other models in 
handling different missing ratio conditions, particularly in high missing 

Table 3 
The evaluation error indicators for four models predicting long-term missing 
values in ID1.

Buoy Code Missing ratio Method RMSE MSE MAE

ID1 10 % ARIMA 0.308 0.095 0.238
LSTM 0.241 0.058 0.187
KS-ARIMA 0.273 0.074 0.206
KS-LSTM 0.168 0.028 0.134

20 % ARIMA 0.330 0.109 0.248
LSTM 0.310 0.096 0.227
KS-ARIMA 0.304 0.092 0.219
KS-LSTM 0.172 0.029 0.136

30 % ARIMA 0.350 0.123 0.264
LSTM 0.333 0.111 0.276
KS-ARIMA 0.319 0.102 0.228
KS-LSTM 0.174 0.030 0.139

40 % ARIMA 0.418 0.175 0.319
LSTM 0.345 0.119 0.267
KS-ARIMA 0.347 0.121 0.260
KS-LSTM 0.230 0.053 0.193

50 % ARIMA 0.443 0.196 0.335
LSTM 0.461 0.213 0.383
KS-ARIMA 0.371 0.138 0.280
KS-LSTM 0.187 0.035 0.149

Fig. 9. The bubble plots of the distribution of prediction errors for buoy ID1with 10%-50% missing ratios of a(i) RMSE, b(i) MSE, c(i) MAE; the error reduction rate 
(%) by KS-LSTM compared to other models of a(ii) RMSE, b(ii) MSE, c(ii) MAE.
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ratio scenarios, where the reduction of prediction error is especially 
significant. Therefore, KS can effectively address noise and other un-
certain factors in observation data, which significantly improve pre-
diction accuracy, handle data incompleteness, and enhance the model’s 
adaptability to SWH fluctuations.

4.2.2. Prediction results with 50 % missing ratio at buoy ID5
To examine the performance of the KS-LSTM model proposed in this 

article with higher short-term missing ratio, a detailed analysis is 

performed on the buoy ID5 dataset with 50 % missing ratio. Fig. 10(a) 
shows the distribution of observed values and filled values for both 
short- and long-term in the entire time series at 50 % missing ratio. By 
zooming in to observe Fig. 10(b) of the long-term prediction and Fig. 10
(c) of the error distribution, it is demonstrated that the prediction ac-
curacy of all models decreases with the increase of missing ratio. The 
median error of KS-ARIMA is 0.204, but instability is shown when data 
with high volatility is dealt with. The median error of ARIMA is 0.177, 
but larger deviations are observed in areas with high volatility. Among 
all models, the largest error of 0.257 and the highest volatility are 
exhibited by LSTM, especially in the peak area. KS-LSTM has a relatively 
low absolute error of 0.139, and better adaptability is demonstrated 
when peaks and fluctuations in time series are handled. These results 
indicate that certain risk-resistance capabilities are provided to LSTM 
and ARIMA after filling short-term missing values by the KS method, 
which allowing these models to better maintain performance even under 
high missing ratios.

Table 4 illustrates that the performance of ARIMA and LSTM is 
significantly inferior to the other two models with 50 % missing ratio. 
KS-LSTM achieves the lowest RMSE of 0.262, MSE of 0.069, and MAE of 
0.193. KS-LSTM demonstrates superior prediction accuracy when the 
missing ratio ranges from 10 % to 50 %, particularly when predicting 
extreme values. In brief, KS-LSTM exhibits best performance in pro-
cessing complex time series with substantial missing data. Fig. 11
display all scatter plots of observed values and predicted long-term 
continuous missing values at buoy ID5. In all subplots, an ideal line 
(the red dashed line) represents a perfect prediction, where the pre-
dicted values are exactly equal to the observed values. The color of the 
dot represents the number of predictions. In Fig. 11, it is observed that 
the data points got by KS-LSTM are closer to the ideal line compared to 
that by other models, especially in areas with denser data points, indi-
cating that the predicted results align more closely with the actual 

Fig. 10. Filling plot for short- and long-term missing values: (a) Complete time series plot of SWH missing values filled by ARIMA, KS-ARIMA, LSTM, and KS-LSTM 
with 50% missing ratio at buoy ID5, (b) Zoomed-in plots of prediction of long-term missing values, and (c) Box plots of absolute prediction errors for each model.

Table 4 
The evaluation error indicators for four models predicting long-term missing 
values in ID5.

Buoy Code Missing ratio Method RMSE MSE MAE

ID5 10 % ARIMA 0.381 0.145 0.281
LSTM 0.330 0.109 0.244
KS-ARIMA 0.321 0.103 0.229
KS-LSTM 0.228 0.052 0.170

20 % ARIMA 0.399 0.159 0.290
LSTM 0.345 0.119 0.253
KS-ARIMA 0.339 0.115 0.256
KS-LSTM 0.245 0.060 0.183

30 % ARIMA 0.381 0.145 0.281
LSTM 0.403 0.163 0.313
KS-ARIMA 0.358 0.128 0.273
KS-LSTM 0.248 0.061 0.181

40 % ARIMA 0.420 0.176 0.334
LSTM 0.399 0.159 0.311
KS-ARIMA 0.324 0.105 0.230
KS-LSTM 0.250 0.063 0.184

50 % ARIMA 0.439 0.192 0.304
LSTM 0.389 0.152 0.304
KS-ARIMA 0.365 0.133 0.280
KS-LSTM 0.262 0.069 0.193
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observed values. It illustrates that when the predicted SWH exceeds 3 m, 
the distribution of data points for LSTM and ARIMA is observed to be 
relatively scattered. Compared to the traditional LSTM and ARIMA, the 
KS-LSTM and KS-ARIMA, have more tightly distributed data points, are 
demonstrated to have superior prediction abilities. Overall, KS-LSTM 
exhibits higher accuracy than KS-ARIMA when dealing with larger 
datasets.

4.2.3. Prediction results using other ratios of missing values
To further verify the spatial generalization ability of KS-LSTM, the 

error performance (RMSE, MSE, MAE) of long-term continuous missing 
values is analyzed by applying different models (ARIMA, LSTM, KS- 
ARIMA, KS-LSTM) are for prediction at different missing ratios of 10 
% − 50 % for different buoys (ID2, ID3, ID4). The evaluation indicators 
are shown in Table 5, Table 6 and Table 7 respectively. For buoy ID2, 

when the missing ratio is 10 %, the best performance in all indicators 
(RMSE: 0.190, MSE: 0.036, MAE: 0.145) is achieved by KS-LSTM, out-
performing other models. Although the RMSE (0.224) and MAE (0.174) 
of LSTM are lower than those of ARIMA, they are still higher than those 
of KS-LSTM. As the missing ratio increased to 50 %, the best perfor-
mance is still maintained by KS-LSTM, with an RMSE of 0.259, which is 
much lower than 0.416 by ARIMA and 0.358 by LSTM. Similar trends 
are shown by buoys ID3 and ID4. As the missing ratio increases, the 
prediction errors of each model gradually increase, but extremely high 
performance is still maintained by the proposed KS-LSTM under various 
test conditions. Especially under high missing ratio conditions, excellent 
prediction ability and significantly lower error are demonstrated by KS- 
LSTM. This fully proves that strong adaptability is possessed by KS-LSTM 
in time series prediction tasks with missing data, and excellent gener-
alization ability is also shown when dealing with incomplete data.

Fig. 11. Scatterplot of observed and predicted SWH (m) at buoy ID5 with 10%-50% missing ratios: Scatter distribution of a(i-v) KS-LSTM, b(i-v) LSTM, c(i-v) KS- 
ARIMA, d(i-v) ARIMA.
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5. Conclusion

To address the simultaneous existence of short-term intermittent and 
long-term continuous missing values in SWH time series data, this work 
proposes an innovative hybrid model that combines KS with LSTM, 
which is named KS-LSTM, to enhance the filling accuracy. In this 
approach, short-term intermittent missing values in SWH are effectively 
filled through real-time recursive calculation and signal smoothing by 
KS, while the impact of random noise is reduced. Long-term information 
is remembered and retained, and long-term trends in SWH time series 
are accurately captured by LSTM using its unique gating structure. 
Consequently, after the short-term missing values are filled by KS, LSTM 
can use its modeling ability of complex sequences to more accurately 
predict SWH long-term continuous missing values. The main findings 
are concluded as follows. 

(1) Comparison of the filling effect of short-term missing values: 
Compared to traditional cubic spline interpolation, the KS 
method shows a significant advantage in filling intermittent 
short-term missing values in the SWH time series. The RMSEs for 

the KS method are found to be 0.179 and 0.180 for 10 % and 50 % 
missing data, respectively, in contrast to 0.243 and 0.240 for the 
CSPI method. This indicates that the KS method is more effective 
in minimizing errors, even when dealing with data with a high 
missing ratio.

(2) Comparison of the prediction effect of long-term missing 
values: Compared to KS-ARIMA, LSTM, and ARIMA, KS-LSTM 
exhibits a maximum RMSE reduction of 49.6 %, 59.4 %, and 
57.8 % at short-term intermittent missing ratios of 10 %-50 %, 
respectively. The maximum reduction in MSE is observed to be 
71.4 %, 83.6 %, and 82.1 %. Similarly, the maximum reduction in 
MAE is 74.6 %, 61.1 %, and 55.5 %. These results indicate that 
KS-LSTM can more effectively reduce prediction errors and 
demonstrate strong generalization ability when handling long- 
term missing values.

(3) Impact of different short-term missing ratios on model per-
formance: As the missing ratio increases, KS-LSTM demonstrates 
stable prediction performance with relatively low errors. Even 
when the missing ratio of buoy ID4 is as high as 50 %, the RMSE, 
MSE, and MAE of KS-LSTM are only 0.125, 0.016 and 0.100, 
respectively. This suggests that KS-LSTM is highly suitable for 
scenarios requiring high-precision prediction, especially when 
dealing with complex time series containing a significant amount 
of missing data.

This research confirms that significant effectiveness in handling 
missing values in SWH time series data is exhibited by the model 
combining KS with LSTM. Especially in scenarios where short- and long- 
term missing values coexist, it is shown that the model not only performs 
well at multiple measurement points, but also maintains prediction ac-
curacy and robustness even when the data missing ratio is high. Future 
research can be further explored through the combination of KS with 
other advanced time-series prediction models (such as other network 
structures in deep learning) to enhance the model’s applicability and 
prediction accuracy across a wider range of data types.
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Table 5 
The evaluation error indicators for three models predicting long-term missing 
values in ID2.

Buoy code Missing ratio Method RMSE MSE MAE

ID2 10 % ARIMA 0.323 0.104 0.234
LSTM 0.224 0.050 0.174
KS-ARIMA 0.268 0.072 0.203
KS-LSTM 0.190 0.036 0.145

20 % ARIMA 0.343 0.117 0.242
LSTM 0.260 0.068 0.203
KS-ARIMA 0.275 0.076 0.207
KS-LSTM 0.183 0.033 0.141

30 % ARIMA 0.372 0.138 0.262
LSTM 0.317 0.100 0.245
KS-ARIMA 0.311 0.097 0.242
KS-LSTM 0.226 0.051 0.181

40 % ARIMA 0.383 0.147 0.273
LSTM 0.320 0.120 0.227
KS-ARIMA 0.347 0.120 0.260
KS-LSTM 0.202 0.041 0.155

50 % ARIMA 0.416 0.173 0.310
LSTM 0.358 0.128 0.264
KS-ARIMA 0.359 0.129 0.259
KS-LSTM 0.259 0.067 0.216

Table 6 
The evaluation error indicators for three models predicting long-term missing 
values in ID3.

Buoy code Missing ratio Method RMSE MSE MAE

ID3 10 % ARIMA 0.427 0.182 0.312
LSTM 0.341 0.116 0.270
KS-ARIMA 0.366 0.134 0.275
KS-LSTM 0.252 0.064 0.195

20 % ARIMA 0.440 0.194 0.312
LSTM 0.367 0.135 0.279
KS-ARIMA 0.373 0.139 0.295
KS-LSTM 0.254 0.065 0.193

30 % ARIMA 0.457 0.209 0.343
LSTM 0.376 0.141 0.286
KS-ARIMA 0.431 0.186 0.334
KS-LSTM 0.255 0.065 0.198

40 % ARIMA 0.488 0.238 0.361
LSTM 0.400 0.160 0.311
KS-ARIMA 0.465 0.216 0.348
KS-LSTM 0.258 0.067 0.200

50 % ARIMA 0.556 0.310 0.411
LSTM 0.418 0.175 0.319
KS-ARIMA 0.505 0.255 0.366
KS-LSTM 0.270 0.073 0.211

Table 7 
The evaluation error indicators for three models predicting long-term missing 
values in ID4.

Buoy code Missing ratio Method RMSE MSE MAE

ID4 10 % ARIMA 0.140 0.020 0.108
LSTM 0.093 0.009 0.073
KS-ARIMA 0.120 0.014 0.098
KS-LSTM 0.091 0.008 0.072

20 % ARIMA 0.132 0.018 0.105
LSTM 0.102 0.010 0.082
KS-ARIMA 0.115 0.013 0.092
KS-LSTM 0.093 0.009 0.074

30 % ARIMA 0.140 0.020 0.110
LSTM 0.115 0.013 0.091
KS-ARIMA 0.117 0.014 0.091
KS-LSTM 0.097 0.009 0.076

40 % ARIMA 0.146 0.021 0.116
LSTM 0.122 0.015 0.099
KS-ARIMA 0.131 0.017 0.107
KS-LSTM 0.112 0.013 0.088

50 % ARIMA 0.150 0.022 0.112
LSTM 0.138 0.019 0.111
KS-ARIMA 0.135 0.018 0.105
KS-LSTM 0.125 0.016 0.100
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