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A B S T R A C T

In the era of artificial intelligence (AI) and digitization, developing self-monitoring and smart-diagnosis bearings 
has become a meaningful yet challenging problem. This study investigates an AI-enabled bearing-structural 
rolling triboelectric nanogenerator (B-TENG), which can achieve condition monitoring and fault diagnosis for 
bearing wear. The geometrical structure of B-TENG is designed to directly use rolling balls as the freestanding 
layer. Besides, the sensing principle of triboelectric signal waveforms and the mapping mechanism of wear faults 
are firstly revealed through a signal decomposition method. Furthermore, a deep learning algorithm can classify 
different wear types, degrees and positions on rolling balls, with higher accuracies of 95.20~98.40 % for the 
feature components. The detection of wear degree related to bearing health and failure evolution is realized for 
the first time. The proposed B-TENG has the potential for digital twin application via interaction with profes
sional simulation software according to the real-time diagnosis classified by AI.

1. Introduction

In the past few years, digital twin has been put forward more 
frequently in the concept of Internet of Things (IoTs) [1]. Combining the 
data collection of IoTs, the information processing of big data and the 
modeling analysis of AI, digital twin can achieve the assessment of 
current state, the diagnosis of past problems and the prediction of future 
developments, and give real-time analysis results, simulate various 
possibilities and provide comprehensive decision supports [2]. As a 
critical supporting component in rotating machines [3], bearing plays an 
irreplaceable role in almost all key industries and daily applications, 
including wheeled vehicles, wind turbines, aero engines, etc. [4], its 
digital twin (Fig. 1a) ought to be firstly and fully considered in Artificial 
Intelligence of Things (AIoTs) systems and Industrial 4.0 [5]. The sen
sory data is the key driver of digital twin [1]. Traditional sensing tech
niques encounter a challenge in terms of sensor arrangement [6], as 
modern machinery tends to be highly integrated. Earlier, a few intelli
gent bearing prototypes have been presented to monitor and detect the 

working condition [7–9]. However, their functions still require addi
tional sensors and systems, such as vibration sensor [10], thermal sensor 
and acoustic emission sensor [11,12], which increase the structural 
complexity, limiting their large-scale application for the digitization.

With more than a decade of development and refinement by re
searchers [13], triboelectric nanogenerator (TENG) technology has been 
studied as a promising solution for collecting energy from the environ
ment to power wireless sensor signal transmissions [14], or for directly 
transmitting sensing information to IoT applications [15]. Noticeably, 
TENG-based sensors are more compatible with bearings, because it is 
easy to find two mated friction surfaces with reciprocating motion inside 
the bearing without external intrusion [16]. More importantly, the 
self-generated sensing output in response to the change or deformation 
of TENG makes the mapping relationship between the signal and the 
physical quantity more direct for further designs [13]. Therefore, using 
TENG to realize self-powered or self-sensing triboelectric bearings has 
been reported frequently. Meng et al. [17] developed a 
bearing-structured self-powered rotation sensor for multitasking motion 
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measurement, including speed, acceleration, and traveling distance. 
Choi et al. [18] presented a triboelectric roller bearing, using the output 
signals, the angular velocity and position of the components can be 
continuously monitored. Han et al. [19] proposed a triboelectric rolling 
ball bearing that can provide a peak power of ~ 20 μW and identify the 
rotation speeds from 268 rpm to 1658 rpm. Gao et al. [20] designed a 
hybrid ceramic rolling element triboelectric bearing with the ultra-high 
rotating speed test at 16000 rpm. Li et al. [21] and Choi et al. [18] were 
earlier concerned about the triboelectric signals influenced by the 
defective balls or the removed rollers in their works. Despite a certain 
self-sensing ability endowed by TENG to bearings, it is still a challenge to 
achieve smart fault diagnosis in digital twins [22]. To date, the bearing 
faults, simulating extremely abnormal conditions, have been identified 
through frequency-domain analyses. Jiang et al. [23] and Han et al. [24]
set up typical failure modes such as inner and outer ring cracks, ball loss, 
and gear defect for the self-sensing triboelectric bearings. By utilizing 
machine learning (ML) algorithms, the classification accuracies can 
exceed 90 % and 92 %. Gao et al. [5] developed a triboelectric 
metal-polymer plain bearing for identifying lubrication states, with the 
test accuracy of a deep learning (DL) model reaching 99.11 %. These 
works not only promote the applications of triboelectric technology on 
bearings, but also prove the feasibility of self-sensing and self-diagnosis 
for triboelectric bearings aided by AI technology.

By waiting until the extreme failure occurs to carry out corrective 
maintenance, the damage and loss may be unavoidable [25]. In indus
trial practice, the most common failure of bearings is slight defects 
occurring on rolling elements, inner and outer rings [26]. For these 
bearing failures to easily occur in the early stage, their detection and 
diagnosis have always been a puzzle [16]. Especially for process 

production, predictive maintenance or active maintenance relying on 
early anomaly detections is of self-evident importance to prolong 
product lifecycle and reduce unplanned downtime [27]. Recently, Han 
et al. [16] realized the identification of the minor structural defects on 
outer rings, inner rings and rolling elements through the current fre
quency affected by the faults, with an accuracy of 80.1 % ~ 92.9 % for 
fault type and fault degree. However, wear of rolling elements, as one of 
the main modes of bearing initial failures [28], without obvious change 
in frequency [26,29], lacks effective real-time detection methods, 
thereby hindering the integrity of fault datasets and the advance of 
digital applications. Nonetheless, wear often brings about the generation 
of damaged surface and the change of friction state [30]. Benefiting from 
triboelectrification, TENG is especially adept at sensing these mutations. 
In our previous work [29], a flexible triboelectric layer for commercial 
bearings is designed to sense the partial wear of steel balls, and suc
cessfully achieved the diagnosis of different wear types by training the 
waveforms of electric signals in Automated ML. A comparison of the 
fault diagnosis works on triboelectric bearing has been summarized in 
Table S1 (Supporting Information). Yet, the mapping mechanism of the 
signal features with the corresponding wear faults, which will determine 
the rationality of the proposed triboelectric method for wear detection, 
is not clear. Furthermore, although triboelectric bearings have been 
applied to various condition monitoring, the exploration of bearing 
health monitoring by smart fault diagnosis is limited, thus cannot satisfy 
the requirements of its digital twins.

Herein, a rolling freestanding mode TENG (B-TENG) using AI tech
nology is proposed for bearing health monitoring to achieve self-sensing, 
smart-diagnosis, and showing the potential to digital twin. B-TENG 
directly utilizes the bearing structure to detect and diagnose the wear of 

Fig. 1. Structure and working principle of B-TENG. (a) Digital application of the bearing. (b) Structural scheme of B-TENG. (c) Detailed view of the interdigitated 
electrodes. (d) Working mechanism of B-TENG. (e) COMSOL simulation results of the potential distribution at four charge transfer stages in one cycle. (f) Potential 
variations calculated by COMSOL on the two electrodes. (g) Comparisons of the simulated and measured voltage signals in time and frequency domains.
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rolling balls, where the balls move freely as a self-driven sensor. The 
sensing principle and mapping mechanism between the wear faults and 
waveform features are firstly revealed via Seasonal and Trend decom
position using Loess (STL) and convolutional neural network (CNN) 
analyzing the triboelectric current waveforms. Then, a DL model based 
on CNN is developed to train and test the sample data of B-TENG with 
different wear types, degrees and positions on rolling balls. After 
extracting features of the wear faults by STL, the prediction accuracy of 
fault types reaches 98.40 %, which is extremely superior to the highest 
accuracy of 69.60 % with the original current signals. Moreover, for the 
first time, the detection of rolling ball wear degree related to the bearing 
health and even lifespan is realized in similar works. The identification 
accuracy of the minor defects with wear degrees of 1–5 % can reach 
96 %, providing a considerable opportunity for the monitoring of 
bearing early failure and fault evolution. Next, the unilateral and 
bilateral wear of the bearing are also simulated. It shows a high accuracy 
of 95.20 % in identifying different positions distributed to the worn 
balls. Finally, a bearing health monitoring demonstration is established 
to diagnose the wear state of bearing balls in real-time and create the 
duplicate digital information of the above results in professional model 
simulation. In general, the proposed system together with AI algorithms 
illustrated a great potential aiming at digital twin application, e.g., 
condition assessment, failure diagnosis and tendency prediction of 
intelligent mechanical equipment.

2. Results and discussion

2.1. Configuration and working principle of B-TENG

Oriented to the research and application of smart fault diagnosis for 
bearings, B-TENG contains the basic elements of mechanical rolling 
bearings. As shown in Fig. 1b(i), the general structure of bearing is 
maintained by the outer ring, rolling balls and cage, adding two groups 
of interdigitated copper electrodes to form the rolling freestanding mode 
TENG with 12 polytetrafluoroethylene (PTFE) balls. Different from 
previous work, the direct contact combination of the copper electrodes 
and the PTFE balls is to obtain the most direct triboelectric signals that 
can reflect the running state of the rolling elements [21]. In the B-TENG 
sensor shown in Fig. 1b(ii), the PTFE balls are employed as the negative 
triboelectric layer, while two groups of interdigitated copper electrodes 
are attached to the inner surface of outer ring as the positive triboelectric 
layer and connected to the external circuit. The cage evenly separates 
the rolling balls and guides each freestanding ball to roll along the comb 
fingers of interdigitated electrode periodically (Fig. 1c), and thus 
providing alternating current (AC) to the external load. The number of 
copper electrode fingers is designed to be twice rolling PTFE balls and 
keep uniform distribution to ensure the maximum stable output of 
B-TENG [31]. This design ensures all balls leave and reach the same 
group of electrode fingers at the same time. The detailed methods for the 
fabrication of B-TENG sensor can be found in the “Experimental Section” 
and Fig. S1 (Supporting Information). Convenience to describe and 
comprehend, two groups of interdigitated electrodes are labeled as A 
and B respectively, as shown in Fig. 1c.

The working principle of B-TENG is illustrated in Fig. 1d. We idealize 
that PTFE balls are equidistant from each other by the isolation of the 
cage opening, and all of them are aligned with the copper electrode A at 
the original stage. After sufficiently contacting with the copper electrode 
A, the PTFE ball is prone to get negative charges distributed on the 
surface, leaving net positive charges on electrode A, since PTFE is more 
triboelectrically negative than copper [32]. When the PTFE ball is forced 
to roll towards electrode B, due to the electrostatic induction, the po
tential between electrode A and B begins to change, driving the electrons 
to electrode A through the external circuit and resulting in a positive 
peak waveform as shown in Fig. 1d(i). Similarly, the continued rolling of 
charged balls will propel the negative charges induced in electrode A 
flow back to electrode B, as displayed in Fig. 1d(ii), until the electric 

potential is back to the original state, producing a negative peak in the 
current waveform. In Fig. 1d(iii), while the PTFE ball rolling over 
multiple pairs of electrode A and B, the alternating positive and negative 
peak values are produced in sequence on the time domain, which will 
form a continuous waveform. The whole process can be viewed as 
multiple combinations of the cycle shown in Fig. 1d(ii).

The above charge flows can also be explained by the variance of 
electric potential across two electrodes in open-circuit condition [17]. 
To verify the analyzed principle and visualize the output signal of 
B-TENG, the distribution of open-circuit voltage (VOC) at four stages of a 
cycle is simulated by the finite element method from COMSOL Multi
physics software, as shown in Fig. 1e. In the open-circuit condition, as 
the charges cannot transfer between electrodes without the load, the VOC 
is defined as the electric potential difference between two electrodes 
[33]. The detailed simulation settings of B-TENG are presented in the 
“Experimental Section”. Numerically calculated via COMSOL, Fig. 1f 
shows the continuous variation of the induced potentials with the 
rotation angle of PTFE balls. The stages corresponding to Fig. 1e are also 
plotted out, of which i’ and ii’ denote the next cycle. When the balls 
move, the distribution of potential on two electrodes changes in a 
complementary way. As a result, once passing a pair of electrodes gen
erates a pair of AC peaks.

The quantifiable relationship of VOC with time (i.e., with rotation 
angle at constant speed) can be obtained by subtracting the induced 
potentials on two electrodes: 

VOC = VB − VA (1) 

VA and VB are the induced potentials electrode A and B, respectively. 
Two groups of data points in Fig. 1f can be viewed as falling exactly on 
the ideal curves of y = sinx and y = -sinx. Therefore, the relation of Eq. 1
can be listed as VOC∝ sin t, where t is time. The simulated voltage signal 
behaves as a “sinusoidal waveform” on the time domain, shown as the 
red dashed line in Fig. 1g. For the proposed B-TENG, the cage is inter
ference fitted on the shaft to drive the rolling balls to rotate, so that the 
rotation frequency of the ball fball is consistent with the speed of the 
motor (i.e., the frequency of the motor fmotor). The relationship between 
them can be easily expressed as: 

fball = fcage = fmotor (2) 

In this design, the number of electrode finger pairs is equal to the 
balls, as Nelectrode = Nball = 12. According to the principle shown in 
Fig. 1d, the frequency of the voltage signal is then obtained as: 

fvoltage = Nelectrode⋅fball (3) 

As shown in Fig. 1g, taking the rotation speed at 180 rpm (fball =

3 Hz), the frequency of the simulated voltage signal is fsimulation 
= 12 × fball = 36 Hz, and the period is Tsimulation = 1/fsimulation = 27.78 s. 
Further, the measured voltage signal in the experiment is introduced to 
verify the validity of the simulation result, as shown by the blue solid 
line in Fig. 1g. After the fast Fourier transform (FFT), the frequency of 
the measured voltage can be directly calculated as fmeasurement 
= 35.93 Hz, and Tmeasurement = 1/fmeasurement = 27.83 ms. It can also be 
seen clearly from the waveform and the corresponding FFT spectrum in 
Fig. 1g, the frequency and period of the measured voltage fit well with 
the theoretical results. Here, the electric signal of B-TENG is self- 
generated without reliance on an external power source.

2.2. Output characteristics of B-TENG under different wear conditions

To test the electrical output performance of B-TENG, the measure
ment and acquisition system driven by a programmable AC motor is 
established as demonstrated in Fig. 2a. B-TENG and its companion 
bearing are installed on the shaft, being driven by the motor through a 
coupling. The signal acquisition flow is illustrated in Fig. 2b. The cage 
drives the rolling balls rotating in B-TENG while the outer ring keeps 

F. Dong et al.                                                                                                                                                                                                                                    Nano Energy 134 (2025) 110550 

3 



stationary. And the movement of these balls across the electrode fingers 
will generate an electrical signal. The output signal is measured by the 
electrometer, and then transferred to the computer through a data 
acquisition (DAQ) unit and displayed on the screen. As illustrated in 
Fig. 2c, d and e, the electrical outputs of VOC, transferred charge quantity 
(QSC) and short-circuit current (ISC) are measured at different rotation 
speeds. The VOC and QSC of B-TENG remain almost constant throughout 
the whole speed range except 60 and 120 rpm, and their peak-to-peak 
values are ~ 40 V and ~ 13.5 nC. This is because the VOC is directly 
related to the constant transferred charges between the electrodes, 
depending on the contact area between rolling balls and electrodes [34]. 
The initial low speeds cannot guarantee the full contact. Similar phe
nomenon is mentioned in Ref. [19]. But in Fig. 2e, the ISC almost linearly 
increases from 0.5 to 3.7 μA with the rotation speed increasing from 60 
to 600 rpm. It could be expressed as 

ISC =
dQSC

dt
=

dQSC

dθ
dθ
dt

= 2π dQSC

dθ
fball (4) 

where dQSC
dθ is the charge change rate [24], which is an inherent 

parameter of B-TENG. In Eq. 2, fball is consistent with the frequency of 
the motor. Thus, the ISC is also positively proportional to the rotation 
speed. As calculated in Fig. S2 (Supporting Information), the linear 
correlation (Pearson’s r) between the mean value of current peaks and 
rotation speed is 0.98, which shows an ability in bearing speed sensing. 
The minimum stable speed of 180 rpm (3 Hz) is selected as the driving 
input for B-TENG, which ensures more signal details can be obtained. 
And referring to most bearing works [5,16,23,24], the ISC is determined 
to be utilized in this study. The healthy current signal of B-TENG is 
displayed as the time-domain waveform in Fig. 2b, to clearly observe its 
characteristics, five consecutive cycles are intercepted. “Healthy” means 
the condition that the rolling balls being tested are perfect and without 
defects. As a freestanding layer TENG working on rolling mode, the 
shape of healthy ISC is similar to the sinusoidal waves, consistent with 
the theoretical analysis and the previous works [35,36].

Structural defects of the rolling balls are artificially introduced by 
grinding, which is one of the common methods used in fault simulation 
experiments [11,16,29]. Under the same measurement conditions, one 

ball wear, two balls wear, three balls wear and one ball loss, four 
different wear types are deliberately set, as shown in Fig. 3a, b, c and d. 
The damage quantity of each worn ball is 5 % of the complete weight. 
Photographs of wear details and weighing comparison are shown in 
Fig. S3 (Supporting Information). As can be seen intuitively in the 
time-domain signals of Fig. 2b and Fig. 3a to d, the waveform shapes of 
the health and four wear types are extremely similar. Quantitatively, the 
Pearson correlation between these current fragments is analyzed in 
Fig. 3e. Labels T1, T2, T3, T4 and T5 mark the five working conditions 
including health, one ball wear, two balls wear, three balls wear and one 
ball loss, respectively. This matrix summarizes the strength of the linear 
relationship between each two datasets of current signals [37]. The re
sults show that all the five signals are positively correlated with each 
other (red area), even the minimum correlation coefficient of T2 (one 
ball wear) and T3 (two balls wear) is still 0.928. The differences between 
these similar signals may be reflected on the subtle changes in 
waveforms.

To extract the full sensory information, DL-assisted data analytics are 
applied [38]. CNN as a basic structure of DL provides an efficient way to 
automatically learn the representative features from the collected orig
inal signals, which has made great achievements in analyzing the 
triboelectric sensing signals [39,40]. Based on the characteristics of local 
connection and parameter sharing, CNN has been shown to be highly 
efficient in obtaining features from the shorter (fixed-length) segments 
of the overall dataset, where the relative locations of features can vary 
[38]. In addition, CNN is noted to be well-suited for processing the time 
series of sensor data [41]. In this study, a DL model is developed based 
on CNN to provide the high recognition performance of health and 
different wear signals through training the current waveforms. In terms 
of the training data, the triboelectric signals of five conditions (T1 to T5) 
are collected by repeating tests. Here, the original current data in time 
domain of five labels is directly used as the training samples, each 
sample is recorded with 1200 data points and 100 samples are collected 
for each label (75 % for training and 25 % for testing). The parameters 
used to build the CNN model refer to the settings in Shi’s work [39] and 
exhibit in Fig. 3f and Table S2 (Supporting Information). The proposed 
network architecture of the bearing wear diagnosis consists of four 

Fig. 2. Experiment process and electrical outputs of B-TENG. (a) Photograph of the measurement and acquisition platform of the bearing. (b) Flow chart of the data 
acquisition of B-TENG. (c) VOC, (d) QSC and (e) ISC under different rotation speeds.
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convolutional layers, four max-pooling layers, and one fully connected 
layer, which output five types of the predicted results of health and 
wear. After the training process in CNN with 50 epochs, the maximum 
accuracy can be achieved, as shown in Fig. 3g. However, with the 
insignificant changes in different waveforms (Fig. 3e), it still raises a 
challenge to extract the diversity and representative features of the 
current signals under different working conditions only through the 
convolutional layer. Intuitively, the penultimate layer is visualized using 
the t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm 
[42]. As shown in Fig. 3h, the abstract features from high dimensional 
space are reduced to two-dimensional (2D) space, and the same label is 
plotted in the same color. Some samples appear clustered, and others 
with different labels are confused together, especially T3 (two balls 
wear) and T5 (one ball loss). This is in line with the average recognition 
accuracy of five wear types only reaching 69.60 % (Fig. 3i). Among 
them, Label T3 presents the highest error rate with most testing samples 
being classified as Label T5. And nearly half of the Label T5’s is mis
judged as Label T3. The reason is their waveforms are too similar to each 
other, causing complete confusion. But the predicted rate of Label T2 is 
100 %. This is because, the current signal of one ball wear marked as T2 
already has the obvious local-changes, as shown in the red shadow of 
Fig. 3a, which is distinct from other labels. About others, the recognition 
rate is not outstanding. The superior accuracy of Label T2 evidences that 

effective fault information is the key to ensuring the performance of 
smart fault diagnosis.

Moreover, to prove the local-change of Fig. 3c caused by the wear 
fault, the damage quantity of one ball wear is increased from 5 % to 
25 % as shot in Fig. 4a. The corresponding fault current signals are 
shown in Fig. 4b. With a more obvious local-change in the red shadow 
than the low degree’s, the waveform peak shows a “flat top” behavior. 
Similar phenomenon can be found in Ref. [33,35,43]. This is because the 
ball is difficult to maintain continuous rolling as the wear aggravates, 
gradually mixing with some sliding. Given the hard observation, the 
change of the motion pattern has been verified in ADAMS multi-body 
dynamics simulation software and displayed in Fig. 4c. The simulation 
settings and results in detail are presented in the “Experimental Section” 
and Movie S1 (Supporting Information). Until the degree of wear rea
ches 25 %, the diameter of the worn surface is 10 mm, which far exceeds 
the spacing between the electrode fingers. As shown in the principle 
schematic of Fig. 4d, at this time, the working mode of the worn ball has 
changed from the rolling freestanding with points to the sliding 
contact-separation with surfaces. The output charge from the worn 
surface can be quantified by Eq. 5 [31]. 

Q = (L/l)σinducedA (5) 

where Q is the overall amount of charges that transport between 

Fig. 3. Current signals of B-TENG with four wear types: (a) one ball wear, (b) two balls wear, (c) three balls wear, and (d) one ball loss. (e) Correlation heat map of 
the current data. (f) Detailed structure of the CNN training model. (g) Training process of the current data for five wear types. (h) Feature visualization of the 
penultimate layer using the t-SNE analysis. (i) Confusion matrix of the testing set from the current data (accuracy of 69.60 %).
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electrodes, L is the sliding distance of the worn surface, l equals half the 
electrode spacing lspacing, σinduced is the maximum density of the induced 
charges on electrodes, and A is the contact area.

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2024.110550.

Hence, the corresponding current can be calculated as 

I =
dQ
dt

=
dQ
dl

⋅v (6) 

When the worn surface slides uniformly from electrode to electrode 
driven by the constant-speed, it can be seen from Eq. 6 that the current 
value remains stable, which will behave as “flat” in the current wave
form, until completely detaching from the previous electrode. t is the 
time to charge transfer, that is, the time required to finish the 
misalignment between the worn surface and the electrode. It is noticed 
that the duration of the current peak is determined by the slider length 
(the worn surface in this study) and the rotation speed. Their relation
ship is emphasized in Ref. [35]. Quantitatively, the duration of the 
current “flat top” of 8 ms shown in Fig. 4d, should be equal to tspacing, the 
time of the worn surface sliding through the electrode spacing of 5 mm 
(approximate a straight line). 

tspacing =
L − lspacing

v
(7) 

v = nπD (8) 

By substituting the known parameters into Eqs. 7 and 8, tspacing is 
theoretically estimated to be ~ 8.04 ms. Therefore, the influence 
mechanism of the fault on the TENG signal is determined as the 
abnormal contact between the rolling ball and the metal electrodes lead 
by wear, which can be fed back to the change of the current waveform. 
The influence is also reflected in the output voltage, as Fig. S4
(Supporting Information) shows that, the VOC (peak to peak) slightly 
increases with the worn area. The additional surface friction boosts the 
triboelectrification that is a surface charging effect dependent on area 
[35]. Above these analyses, the sensibility of TENG to the contact sur
face has been proved, which is well suited to detect the wear fault.

2.3. Data processing and fault diagnosis via STL decomposition and DL 
model

According to the prediction results shown in Fig. 3i, few fault fea
tures can be directly captured from the original current signal, thus 
different information of each label sample cannot be fully utilized, 
seriously affecting the performance of fault diagnosis. To obtain high- 
quality wear fault samples and significantly improve their diagnosis 
accuracy, the STL decomposition is introduced to extract critical fault 
information from the limited original data. As a typical feature 

extraction technique, the signal decomposition algorithm decomposes 
the original data into different components, and then generates new 
waveform samples with obvious fault features. Specifically, the STL 
decomposition uses the locally weighted scatterplot smoothing (Loess) 
to smooth the time series data and decompose it into additive compo
nents, including season, trend and random [44], as shown in Fig. 5a. The 
main steps of the algorithm are seasonal smoothing and trend smooth
ing, after which, the trend values Tt and the season series St are got from 
the original values Yt. And the random series Rt can be calculated ac
cording to Eq. 9: 

Rt = Yt − Tt − St (9) 

The mathematical details can be found in Note S1 (Supporting In
formation). For the current data of this study, as shown in Fig. 5b, the 
season component represents the AC variation, that is, the rolling balls 
across the electrode fingers periodically. The trend reflects that the 
current tends to be stable. On short datasets under a constant speed, the 
above two components are similar, and cannot provide representative 
information for different working conditions. And this is the main reason 
why these signals (Fig. 3e) are easily confused. The occasional anoma
lous observations do not affect the estimation of season and trend, but 
ultimately, they will be counted in the random component [29]. In 
theory, the random component contains the complete fault information. 
Compared with the original data, due to the redundant similar compo
nents being subtracted, the fault features are more prominent, which is 
conducive to the feature selection for the CNN model [45]. Therefore, 
the random component waveforms of the original current signals are 
used as new fault samples of rolling ball wear.

The random component waveforms of the five current signals in 
Fig. 3 are displayed in Fig. 5c, which reveals the featured patterns of the 
wear faults, including some important local-features. In these compo
nent waveforms with five signal cycles, two “one-cycle waveforms” at 
the corresponding positions are selected as the “local-feature 1” and “2” 
for analysis, as shown by the blue and red shadows. The original 
waveforms (blue and red dot plots) from the healthy signal are employed 
as the shape comparisons for observing the difference between the local- 
features. Since the rotation speed is constant, the horizontal direction 
(time axis) of the waveform image has been normalized. And the dif
ferences that can be exploited may come from amplitude, number of 
peaks and troughs, and holding time. The local-feature 1 of the healthy 
condition T1 almost coincides with the original waveform, indicating 
that there is no obvious anomaly in the data. But in T2 (one ball wear), 
its local-feature 1 shows a clear abnormal point on the normal peak, 
resulting in a “depression” on the waveform. Referring to the change in 
the original signal mentioned earlier, the reason is a sliding contact 
between the rolling ball and the electrode. With the increase of worn 
balls, continuous abnormal points are presented, such as the local- 

Fig. 4. Signal mutation of B-TENG caused by wear. (a) Photograph of the rolling balls with 5 % and 25 % wear degrees. (b) Current signal of one ball with 25 % 
wear. (c) Sliding motion of the worn ball in ADAMS. (d) Detailed sampling points of the current “flat top”.
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feature 2 of T3 (two balls wear) and T4 (three balls wear). The number of 
anomalous points depend on the number of worn balls. This is because 
B-TENG triggers multiple ball defects, causing a continuous change in 
the time series of the local-feature, which will bring a clear distinction 
for CNN [38]. The correlation between the random component wave
forms decreased significantly, as shown in Fig. 5d. Unexpectedly, the 
local-feature of T5 (one ball loss) presents a high coincidence degree 
with the original waveform, and their correlation coefficient reaches 
0.95. This may be because the remaining balls are intact, without any 
worn surface, and still keep the continuous rolling.

Under the same setting of the CNN model, the newly generated 

random components are used as five label samples (T1 to T5) for fault 
type recognition, which also corresponds to five conditions of health, 
one ball wear, two balls wear, three balls wear and one ball loss, 
respectively. Because comes from the original data, there are still 100 
samples for each label with a sample length of 1200 data points. It is 
noted that the local-feature waveforms shown in Fig. 5c include about 
20 and 30 points, respectively. The length of the sliding window 
following the initial setting is determined as 50 to ensure that at least 
one local-feature information can be fully covered. Fig. S5 (Supporting 
Information) displays the training process of the CNN model, where the 
accuracy rates of both training and validation sets increase rapidly with 

Fig. 5. Mapping mechanism and fault diagnosis based on the decomposed signals. (a) Schematic diagram of the STL decomposition process. (b) Three components of 
the original current signal decomposed through STL. (c) Random component waveforms of five current signals with different wear types. (d) Correlation heat map of 
the random components. (e) Feature visualization of the penultimate. (f) Confusion matrix of the testing set from the random components (accuracy of 98.40 %). (g) 
Random component waveforms of “one ball wear” with different data lengths.
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the training epochs. After the 20 epochs, the oscillation amplitude of 
accuracy curves has reduced to less than 10 %, and the accuracy and loss 
curves tend to be horizontal after 40 epochs, indicating that the model 
has converged and generalized enough to avoid overfitting. When the 
training time continues, the performance of the model is no longer 
significantly improved. To balance the model quality and computational 
complexity, the training epochs are set as 50 for the five label samples. 
Moreover, the penultimate layer is also visualized using t-SNE for 
proving the effectiveness of the model prediction. As shown in Fig. 5e, 
the decomposed random component samples present a good clustering 
effect, because the points in the same color are tightly hugged together 
and keep a long distance from other colors, indicating that the model can 
fully mine the abstract features of different labels. Compared with 
Fig. 3h, the STL decomposition brings more obvious fault features under 
the same input.

Fig. 5f shows the confusion matrix of the five labels classification 
using the random components. The results of other components are also 
provided in Fig. S6 (Supporting Information). It is obvious that the 
trained model has a higher prediction accuracy of 98.40 % compared to 
that using the original data (69.60 %), season components (66.40 %) or 
trend components (52.80 %), indicating that the effective data features 
play an important role in improving the recognition performance of the 
system. Of the total 125 (100 × 0.25 × 5) predicted results, only two 
fault waveforms are misjudged as other labels. In Label T4 (three balls 
wear), maybe the position of the abnormal points is close to the wave
form crest, which is misjudged as the healthy condition T1 by the model. 
To the surprise, the predicted rate of Label T5 is 100 %. Although 
overlap the healthy waveform, all the waveforms of one-ball-loss con
dition are successfully detected. It can be inferred that the loss of the 
rolling ball is a serious fault, which will bring different changes from 
other wear faults. After introducing the STL decomposition to extract the 
features of the current signal, the diagnosis accuracy of wear faults is 
considerably improved. Then, the accuracies of other commonly adop
ted DL models are compared in Fig. S7 (Supporting Information), 
including deep neural network (DNN) and long short-term memory 
(LSTM) network. Their structure and parameters can be found in 
Table S3 and S4 (Supporting Information). The results show that the 
proposed CNN has the highest diagnosis accuracy under the approxi
mate settings. The great feasibility of intelligent bearing fault diagnosis 
method via STL and CNN can be established.

More importantly, STL is robust to the input data length. As 
demonstrated in Fig. 5g, whether 1/8, 1/4, 1/2 or 1 sample length, their 
random component waveforms in the same time domain remain un
changed. Moreover, it can be noticed that the fault local-features are 
repeated over the samples, rather than occurring by accident. In theory, 
the fault information can be extracted without relying on a large and 
complete input, once the collected data contains. This is of great sig
nificance for the practical engineering scenarios, where the monitored 
data is often discontinuous by the limitations of energy and 
transmission.

2.4. Wear degree and position detection with B-TENG

As one of the most common incipient failure modes of bearings, the 
timely response at the beginning of the wear of moving parts can avoid 
major accidents. Therefore, the accurate detection of the wear degree of 
rolling balls is of great concern, especially the slight wear that occurred 
in the initial stage of machine service. Focusing on one ball wear, the 
current signals with different wear degrees are selected for further dis
cussion, including minor wear (wear degree of 1 %, 2 %, 3 %, 4 % and 
5 %) and obvious wear (wear degree of 5 %, 10 %, 15 %, 20 % and 
25 %). The percentage of wear degree is defined as the weight loss after 
wear divided by the weight of the perfect ball. The schematic of wear 
degree is shown in Fig. 6a, and all the wear details and weighing com
parison are shown in Fig. S3 (Supporting Information). The actual 
photos of rolling balls with the wear degrees of 1 %, 2 % and 3 % are 
shot in Fig. 6b, whereas other vibration sensors commonly used in 
bearings are helpless for such slight wear [12,26,46]. Here, the typical 
local-features of the current random components from different wear 
degrees are displayed in Fig. 6c. Even 1 % wear can be sensed by 
B-TENG and visualized by the STL decomposition. Accurate diagnosis of 
wear degree deterioration will lay the groundwork for bearing health 
monitoring. Fig. 6d and Fig. S8 (Supporting Information) present the 
prediction results of the minor wear and obvious wear, respectively. The 
average accuracy for 1–5 % wear is 96 %, in which the error samples are 
only distributed in the wear degrees less than 3 %. And visualizing it 
training process in Fig. 6e, the same model still converges rapidly within 
40 epochs, which highlights the advantage of STL + CNN in extracting 
and learning the abstract features. Not surprisingly, the prediction rate 
of the obvious wear (5–25 %) can reach 98.40 %. Furthermore, the 

Fig. 6. Wear degree detection via STL and CNN. (a) Schematic and (b) photograph of rolling balls with the wear degrees of 1 %, 2 % and 3 %. (c) Local-features of 
different wear degrees. (d) Confusion matrix and (e) training process of the minor wear prediction (accuracy of 96.00 %). (f) Confusion matrix of the nine-label 
classification with all one-ball-wear conditions (accuracy of 97.33 %).
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nine-label classification of all one-ball-wear conditions (1 %, 2 %, 3 %, 
4 %, 5 %, 10 %, 15 %, 20 % and 25 %) is tested to verify the model 
portability for bearing health monitoring in the wear continuously 
deteriorating. By setting the batchsize from 6 to 15, the iterations in each 
epoch are increased to cope with the growth of the data dimensions. 
Fig. 6f shows the confusion matrix of the nine-label classification. After 
training, the model can successfully distinguish nine kinds of increasing 
wear degrees with an accuracy of 97.33 %. The proposed method shows 
a prospect to monitor the fault evolution and even the whole lifecycle of 
bearings. In addition, it is noted that the local-features 1 with 10 % and 
15 % wear are similar to that of two balls wear (5 % + 5 %) and three 
balls wear (5 % + 5 % + 5 %). This proves that the current waveform is a 
superposition of the electrical output from each ball. However, as 
mentioned earlier, the local-feature 2 is highly related to the number of 
worn balls, so they do not confuse each other. The proof is given by the 
confusion matrices of one ball wear (10 %) with two balls wear and one 
ball wear (15 %) with three balls wear, as shown in Fig. S9 (Supporting 
Information).

Bearing offload from the improper assembly will cause unilateral or 
bilateral wear [28]. The sensing of B-TENG to different wear positions is 
verified by setting different distributions of the two worn balls (5 %). As 
shown in Fig. 7a, among the twelve rolling balls arranged along the 
inner wall of the outer ring, the condition of two worn balls in adjacent 
position is labeled P1, the condition of two worn balls spaced by one 
normal ball is labeled P2, …, until the condition of two wear balls spaced 
by five normal balls (opposite position) is labeled P6. The actual photos 
of P1 and P6 are shot in Fig. 7b. Through Fig. 7c, the typical 
local-features from different wear positions show that their basic 
waveform shape is associated with that of two balls wear. With spacing, 
the synchronicity of two worn balls becomes worse, and the feature 
waveforms begin to differ. Then, the six-label recognition experiment is 
carried out for the conditions of P1 to P6, and the prediction results are 
displayed in Fig. 7d. Label P2 and P3 are seriously confused, since the 
closer positions lead to the convergence of two conditions. Nevertheless, 
other results show a sensitivity to the fault position. By taking each 50 % 
sample of Label P2 and P3 to form a new label (P2 + P3), the five-label 
recognition results are obtained in Fig. 7e. The average predicted ac
curacy of different wear positions is up to 95.20 %. In particular, the 
detection rates of the adjacent (P1) and opposite (P6) positions are 
100 % and 92 %, respectively. This is of great significance for bearings 
to determine the wear mode and analyze the load direction. For com
parison, the classified and predicted results using original current data 

of different wear degrees and different wear locations can be found in 
Fig. S10 (Supporting Information). It is further proved that the feature 
preprocessing by the STL decomposition helps to improve the perfor
mance of the CNN model in this study.

2.5. Digital twin demonstration with bearing health monitoring system

Bearings, owing to their extensive applications, have played a pivotal 
role in almost all key industries and will serve as an indispensable 
foundational component in the future digital twin systems. To demon
strate the application potential of the triboelectric wear sensing repre
sented by B-TENG, a digital twin-oriented bearing health monitoring 
system is constructed, enabling the non-destructive detection and the 
real-time diagnosis of bearing wear, where the recognition results in the 
real space can be real-timely projected into a virtual space. The process 
flow of establishing and using the system is explained in Fig. 8a. When 
the system is running, the triboelectric current signal of the B-TENG 
sensor can be collected regularly, whereafter the trained CNN model can 
in-time predict the signal passed the feature extraction. After extracted 
with the STL decomposition and classified with the CNN model, the real- 
time signal diagnosis system is realized as shown in Fig. 8b and Movie S2
(Supporting Information). The screen displays the real-time collected 
signal, the post-decomposition signal waveform, and the corresponding 
predicted result and picture for the presupposed fault. The system has 
successfully achieved the real-time accurate diagnosis of healthy con
dition and four faults (one ball wear, two balls wear, three balls wear, 
and one ball loss). Then, connecting the real-time diagnosis system with 
the dynamics simulation software, the digital twin application is 
conceptualized as shown in Fig. 8c. Once the real-time diagnosis result is 
received, the bearing digital-twin body corresponding to the wear fault 
is called and begins to run in ADAMS software, as demonstrated in 
Movie S3 (Supporting Information). The diagnosis results will dynami
cally adjust the input parameters of digital models (such as the number 
of worn balls), so that the real failure can be correctly reflected and 
analyzed in ADAMS. To achieve digital twin in future, more discretized 
bearing digital models under different working conditions need to be 
prepared. Its real-time requirement is guaranteed by real-timely 
receiving the diagnosis results classified by AI and real-timely calling 
the corresponding simulations. When digital-twin body is called and 
analyzed, the simulation time can be asynchronous but delicate to 
ensure the accuracy. Digital twin supported by professional software 
will facilitate the provision of comprehensive and precise measurements 

Fig. 7. Wear position detection via STL and CNN. (a) Schematic of different wear positions. (b) Photograph of two worn balls in adjacent and opposite positions. (c) 
Local-features of different wear positions. (d) Confusion matrix and (e) label-adjusted confusion matrix of wear position prediction (accuracies of 82.67 % 
and 95.20 %).
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for intelligent decision and regulation.
Supplementary material related to this article can be found online at 

doi:10.1016/j.nanoen.2024.110550.
Given the differences between laboratory settings and real-world 

scenarios, B-TENG and the system may face limitations in industrial 
applicability and model generalization. Potential challenges may arise 
from bearing compactness and balance, applications on steel-based 
bearings, failure diversity and variability, wireless and self-powered 
systems, etc. Our subsequent works will focus more on maintaining 
traditional bearing structures and exploring transfer learning for the 
trained models. Going forward, further investigation is required into 
such as implantable structures, integrated circuits, embedded systems, 
incremental learning, adaptive models and model interpretability.

3. Conclusion

In summary, an AI-enabled rolling TENG is developed for self- 
sensing and smart-diagnosis of intelligent bearings by utilizing the 
triboelectric principle. Considering the scalable measurement, B-TENG 
is directly derived from an actual bearing structure, where the rolling 
PTFE balls driven by the cage serve as a movable freestanding layer to 
participate in the triboelectrification with the interdigitated copper 
electrodes. In the investigation of bearing ball wear fault diagnosis, the 
STL decomposition algorithm is introduced to extract fault features in 
the indistinguishable current signals. And the time-domain feature 
waveforms are analyzed to reveal the sensing principle of B-TENG. Then, 
a CNN model is proposed. Through training, the considerably accurate 
recognition of different wear types, degrees and positions on rolling 
balls can be achieved with 95.20~98.40 %. Especially, the minor de
fects of rolling ball with wear rates of 1–5 % are paid attention, which 
shows the effective detection capacity for the bearing early failure and 
fault evolution. Finally, a bearing health monitoring system aimed at 
digital twin application is demonstrated, which can real-timely diagnose 
the wear state of bearing balls, thereby calling a bearing digital-twin 

body in the professional model simulation software. In general, the 
marriage of triboelectric effects and AI algorithms is verified to monitor 
the health condition of target bearings, presenting a strong potential in 
the field of fault diagnosis for intelligent machinery. The proposed 
digital-twin system can real-timely sense, accurately diagnose and 
actively reflect the state of physical objects through the TENG-based 
measurement, DL-assisted analysis and model-mapped simulation, 
making a pioneering exploration to applying triboelectric sensing 
technology in digital twins.

4. Experimental section

4.1. Fabrication of B-TENG

B-TENG consists of an Acrylic outer ring, two groups of interdigitated 
copper electrodes, twelve PTFE balls and a Polylactic acid (PLA) cage. 
The dimensions of B-TENG refer to a SKF63009–2RS1 deep groove ball 
bearing. The outer ring with a width of 25 mm, inner diameter of 66 mm 
and wall thickness of 2 mm, was cut by a laser cutting machine from a 
transparent acrylic tube for observation. The interdigitated copper 
electrodes consist of two groups of complimentary finger arrays, each of 
which has twelve electrode fingers, cut from two pieces of copper film 
with a thickness of 0.06 mm. The electrode width is also designed to be 
25 mm to ensure the rolling balls only contact with the electrode fingers. 
The finger width is 3.7 mm and the spacing between two adjacent fin
gers is 5 mm. After cleaning and drying the outer ring, the interdigitated 
electrodes were attached to the inner surface. The diameter of the PTFE 
ball is 10.5 mm. The cage was printed by a 3D printer (Z6, Dwmaker) 
with PLA material, and its diameter is 58 mm, which spaced these balls 
evenly and guided their movement.

4.2. Setting of the wear faults

Different wear of rolling balls is simulated and fabricated by 

Fig. 8. Digital twin-oriented bearing health monitoring system. (a) Process flow of establishing and using the system. (b) Real-time diagnosis for different bearing 
wear conditions. (c) Bearing digital-twin body in ADAMS software.
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grinding. While a perfect PTFE ball was being held in a manual fixture 
(#15, GuanGO), its exposed surface was polished with a file. The weight 
loss was weighed continually by an electronic balance (FA2004N, 
SHANGPING) to determine the wear degree. Such as 5 % wear, the 
worn-off weight can be calculated by 1.31 × 0.05 = 0.0655 g, since the 
weight of a perfect ball is 1.31 g. The above process was repeated for 
different wear degrees.

4.3. Electrostatic and dynamic simulation

3D models were built according to the actual dimensions of B-TENG. 
For electrostatic simulation via COMSOL software (COMSOL Multi
physics 5.6, COMSOL), the outer surface of the PTFE ball was assigned a 
surface charge density of − 8 × 10− 6 C m− 2 [17]. In open-circuit con
dition, the two planar electrodes were both assigned the corresponding 
suspension potential and grounding. For dynamic simulation via 
ADAMS software (Adams 2020, MSC), the component models (cage, 
rolling balls, outer ring and sealing covers) of B-TENG were first 
established and assembled by SOLIDWORKS software (SOLIDWORKS 
2019, Dassault Systèmes). Then, the model file was imported into 
ADAMS software. The drive function of the revolute pair was typed as 
1080 d * time while 180 rpm. The simulation step size in this study is set 
at 0.001 s.

4.4. Data collection and DL training

The experimental platform consisted of an AC servo motor (750 W, 
3000 rpm, HECHUANG), a frequency converter (DKC-Y110, YIXING), a 
rotor shaft (aluminum alloy, diameter 20 mm × length 90 mm) and a 
bearing pedestal (SKP004, KIF). All the test components were bolted to 
the optical platform (aluminum, 300 mm × 300 mm × 13 mm). The 
generated triboelectric signals of B-TENG were acquired by a DAQ card 
(9215, NI) in an electrometer (6514, Keithley) with a sampling fre
quency of 1000 Hz. In setting the training data for DL training, a current 
signal was recorded with 1200 data points and 100 samples were 
collected for each wear condition, where 75 samples were used for 
training (75 %) and 25 samples for testing (25 %). Using the above 
settings but after the STL decomposition, the random components of all 
current samples were used as the new samples. The CNN models were 
configured as follows: the categorical cross-entropy function was 
applied as the loss function, the adaptive moment estimation was used 
as the update rule due to its optimization convergence rate, and pre
diction accuracy was used to evaluate the model training. Each time the 
specified 20 epochs passed, the learning rate was reduced by 10 times. 
These models were developed in MATLAB software (MATLAB R2022a, 
MathWorks) and trained on an ordinary performance computer (CPU: 
i5–10400F 3.60 GHz, Intel; GPU: GeForce GTX 1050Ti, NVIDIA).

4.5. Demonstration of the digital twin application

The triboelectric current signals from B-TENG were first connected to 
the analog-to-digital converter of the electrometer. The acquired signals 
were sent to a LabVIEW-based computer by USB cable communication 
instantly. LabVIEW software (LabVIEW 21.0, NI) called Python 3.6.8 
with the STL file and the trained model to process the received signal 
and display the predicted result on its front panel. When the first pre
dicted result was detected, the corresponding digital-twin body began to 
run in ADAMS software. And then, the regular diagnosis results will 
dynamically adjust the input parameters and other digital models, so 
that the real failures can be correctly reflected and analyzed in the 
simulation software.
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