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Cooperative co-evolutionary differential evolution algorithm applied for 
parameters identification of lithium-ion batteries 
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A B S T R A C T   

Parameters identification of battery is a significant task for lithium-ion batteries. Some widely used techniques 
usually simplify the electrical circuit model (ECM) with non-linearity to a linear model or local linear model. 
However, by using such a methodology, the parameters in ECMs are not globally optimal, since the parameters 
may be not consistent at different linearized points. To address this issue, this paper proposed a cooperative co- 
evolution differential evolution (CCDE) algorithm to identify parameters of lithium-ion battery, without any 
linearization or pre-assumption. First, to describe the dynamic behaviors of battery, we presented a first-order RC 
equivalent circuit model ECM. Without making any approximation, improved Euler’s numerical method was 
utilized to solve the differential equations directly. Second, an optimizing objective function was built to 
minimize errors between the true and optimized terminal voltages. In that optimization model, parameters of 
battery (R0, RP and CP) and vOCV(t) at each sampling point were considered as variables to be optimized, resulting 
in a very high-dimension problem. Third, such an optimization problem was transformed into a large scale 
optimization problem (LSOP). Based on the character of parameters identification, we proposed a new m- 
decomposition method which is different from general grouping methods for benchmark functions and its cor-
responding differential evolution (DE) algorithm to solve this LSOP. Comprehensive experimental results 
demonstrated effectiveness of the proposed framework and methodology, compared with seven state-of-the-art 
cooperative co-evolution methods.   

1. Introduction 

Battery is the most important energy storage device in the current 
world. Many significant engineering domains, such as electric vehicle 
(EV), smart phone and power grid, need batteries as their dominating 
energy storage device (Kwak, Lkhagvasuren, Park, & You 2020). Within 
various categories of batteries, lithium-ion battery (LIB) is the most 
competitive and promising one due to high efficiency, long cycle life and 
high energy density (He, Xiong, & Peng, 2016; Lu, Han, Li, Hua, & 
Ouyang, 2013;Xing, Ma, Tsui, & Pecht, 2011). Some important states of 
lithium-ion battery, such as the state of charge (SOC), must be moni-
tored by battery management system (BMS) during charging and dis-
charging procedures. In recent years, estimating SOC methods based on 
electrical equivalent models (ECM) by using measured load current and 
terminal voltage became popular. Such a methodology requires accurate 
parameters of battery in ECMs. Battery state estimation, in which esti-
mating SOC is very important, is a key advanced BMS feature in EVs. 

Precise modeling and state estimation will allow stable operation, 
facilitate optimal battery operation, and provide the fundamentals for 
security supervision. Note that, the parameters of LIB have a significant 
impact on precise modeling and state estimation. Therefore, it is sig-
nificant to identify the parameter of lithium-ion battery accurately. 

Many research works have attempted to identify the parameters of 
LIB precisely. For the convenience of reading, we would like to cate-
gorize such research works into several groups as shown in Table 1. The 
reviews on these related works in detail could be seen below. 

Although parameters identification methods are applied for various 
models of battery, such as electric model (Rakhmatov, Vrudhula, & 
Wallach, 2003), thermal model (Jeon & Baek, 2011), aging model (Belt, 
Utgikar, & Bloom, 2011), Physical models (Ramadesigan et al., 2011; 
Smith, Rahn, & Wang, 2007; Xu, Li, & Liu, 2018), ECMs (Andre et al., 
2011; Chen & Rincon-Mora, 2006; Hu, Yurkovich, Guezennec, & Yur-
kovich, 2009; Li, Lai, Wang, Lyu, & Wang, 2016), et al. The majority of 
identifying methods are based on ECMs representing the electric 
behavior of the battery. This is because ECMs make a good trade-off 

* Corresponding author at: Marine Engineering College, Dalian Maritime University, 1 Linghai Road, Dalian, Liaoning Province 116026, People’s Republic of 
China. 

E-mail address: chuanwang0101@163.com (C. Wang).  

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

https://doi.org/10.1016/j.eswa.2022.117192 
Received 25 October 2021; Received in revised form 28 March 2022; Accepted 3 April 2022   

mailto:chuanwang0101@163.com
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2022.117192
https://doi.org/10.1016/j.eswa.2022.117192
https://doi.org/10.1016/j.eswa.2022.117192
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.117192&domain=pdf


Expert Systems With Applications 200 (2022) 117192

2

between the mathematical models and the physical ones. Moreover, it is 
simple to implement for real time applications (Barcellona & Piegari, 
2017). So we made a short overview which focuses on this mainstream. 
Numerous works have investigated parameters identification of battery 
by using various methods. Usually, SOC is simultaneously estimated. A 
typical representation is the recursive algorithm with iterative charac-
teristics, including the Kalman filter (Wei, Dong, Chen, & Kang, 2017) 
and its derivative algorithms (Wang, Pan, Liu, Chen, & Ling, 2018), as 
well as least squares (LS) (Zeng, Tian, Li, & Tian, 2018). The family of 
Kalman filters consists of various derivative methods, such as linear 
Kalman filter (Mastali et al., 2013), extended Kalman filter (Dai, Wei, 

Sun, Wang, & Gu, 2012; Lee, Dai, & Chuang, 2018), adaptive extended 
Kalman filter (Sepasi, Ghorbani, & Liaw, 2014; Zhu, Xu, Liu, & Zheng, 
2019), unscented Kalman filter (Chen, Yang, Zhao, Wang, & He, 2019; 
Zeng, Zhang, Yang, Xie, & Shi, 2019), central difference Kalman filter 
(Xuan, Shi, Chen, Zhang, & Wang, 2020), cubature difference Kalman 
filter (Peng, Luo, He, & Lu, 2019), et al. Generally speaking, Kalman 
filter algorithm can be regarded as a recursive mechanism which esti-
mates and updates system states based on the feedback errors. Linear 
Kalman filter is optimal for linear system. Since the open-circuit voltage 
(OCV) function is non-linear for SOC estimation (as shown in Fig. 2), 
other methods such as extend Kalman filter usually linearize the non- 
linear system at each time step. However, the accuracy of SOC estima-
tion by using Kalman filter family heavily relies on OCV function line-
arization and parameters in the ECM. The OCV function is non-linear, 
and the parameters of battery model is hard to identify. On the other 
hand, although LS was applied for identifying parameters of battery 
(Zheng et al., 2016), this method essentially is not suitable for non- 
convex optimization problems with many local optima. According to 
our previous experience, parameters identification of battery is probably 
a multi-modal problem. That is to say, LS is not a global search algo-
rithm, resulting in stagnation due to local optima. Such methods could 
not find parameters of battery as globally optimal solutions. Moreover, 
when LS and Kalman filter are used for estimating SOC (Zheng et al., 
2016), vOCV is usually assumed as a constant value. In this situation, the 
uncertainty of vOCV is ignored by using LS, resulting in not accurate 
parameters estimated. Some recent published papers focused on iden-
tifying parameters based on ECM and battery historical operating data 
directly. The discrete state-space equations of the impedance model 
were inferred by Grtinwald-Letnikov definition and parameters of the 
model including the order of the fractional element were identified 
together by genetic algorithm (Mu, Xiong, Zheng, Chang, & Chen, 
2017). To predict the battery pack SOC, the method of particle swarm 
optimization-genetic algorithm was applied in battery pack model 

Nomenclature 

CC Cooperative co-evolution 
CCDE Cooperative co-evolution differential evolution 
DE Differential evolution 
DST Dynamic stress test 
EA Evolutionary algorithm 
ECM Equivalent circuit model 
EV Electric vehicle 
FUDS Federal urban dynamic schedule 
LIB Lithium-ion battery 
LS Least square 
LSOP Large scale optimization problem 
OCV Open-circuit voltage 
SOC State of charge 
CP Capacitance describes the polarization characteristics of a 

battery (F) 
Cr Crossover rate 
Cru Upper limit of Cr 
D Length or dimension of a target vector or individual 
Dsub Dimension of a target vector in Xsub 
F Scale factor 
Fu, Fl Upper and lower limits of F 
FES Functional evaluations 
G Index of generations 
Gmax Maximum of generations 
K1, K2 Intermediate variables for improved Euler’s method 
MAX_FES Maximum functional evaluations 
MAX_FESsub Maximum functional evaluations for sub-populations. 

N Number of groups or sub-populations 
NP Population size 
R0 Inner resistance (Ω) 
RP Resistance describes the polarization characteristics of a 

battery (Ω) 
Ui,G Trail vector for ith individual at Gth generation 
Vi,G Mutation vector for ith individual at Gth generation 
VL, VU Lower and upper cut-off voltage of battery, respectively (V) 
Xbest,G The target vector with the best fitness value at Gth 

generation 
Xi,G Target vector, i.e., ith individual at Gth generation 
Xpnbest,G The target vector with the best fitness value at Gth 

generation 
Xmin, Xmax lower and upper limits for variables to be optimized, 

respectively 
Xsub Sub-population 
h Step size (s) 
iL Load current (A) 
k Sampling time step in a dataset 
kmax Total number of data points in a dataset 
m Sampling interval when an optimization algorithm is used 
t Real sampling time (s) 
vC Voltage of CP (V) 
vOCV Voltage of OCV (V) 
vterm Terminal voltage (V) 
v̂term Estimated terminal voltage (V) 
x* Global best solution found by an algorithm  

Table 1 
Summary of related works on parameters identification of LIB based on ECMs.  

Methods References 

Kalman filter family Wei, Dong, Chen, & Kang (2017); Wang, Pan, 
Liu, Chen, & Ling (2018); Zeng, Tian, Li, & Tian 
(2018); Zeng, Tian, Li, & Tian (2018); Dai, Wei, 
Sun, Wang, & Gu (2012); Lee, Dai, & Chuang 
(2018); Sepasi, Ghorbani, & Liaw (2014); Zhu, 
Xu, Liu, & Zheng (2019); Chen, Yang, Zhao, 
Wang, & He (2019); Zeng, Zhang, Yang, Xie, & 
Shi (2019); Xuan, Shi, Chen, Zhang, & Wang 
(2020); Peng, Luo, He, & Lu (2019) 

Genetic Algorithm (GA) Mu, Xiong, Zheng, Chang, & Chen (2017) 
Particle Swarm Optimization- 

Genetic Algorithm (PSO-GA) 
Zhang, Wang, Liu, & Chen (2018) 

Co-evolutionary Particle Swarm 
Optimization (CPSO) 

Yu, Xiao, Li, Zhu, & Huai (2017) 

Artificial Ecosystem-based 
Optimization (AEO) 

Ferahtia et al. (2021) 

Optimization Toolbox of Matlab Miniguano, Barrado, Lazaro, Zumel, & 
Fernandez (2020)  
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parameters identification (Zhang, Wang, Liu, & Chen, 2018). A co- 
evolutionary particle swarm optimization (CPSO) method was used to 
identify battery parameters (Yu, Xiao, Li, Zhu, & Huai, 2017). A 
parameter identification window (PIW), which has the features of a 
fixed data length and real-time response, was used to store a piece of 
data that indicates the battery operation at the current moment. How-
ever, these methods still assumed that the OCV curve could be partially 
linearized within a PIW, or only partial measured current and voltage 
were used for optimizing parameters of battery. As a results, the iden-
tified parameters are not global optimal. An optimal parameter identi-
fication strategy for the Shepherd model of LIB was presented by 
applying an artificial ecosystem-based optimization (AEO) algorithm 
(Ferahtia et al., 2021). However, this method was used for identifying 
parameters based on a polynomial model. As shown in Fig. 2, it is not 
appropriate and accurate to describe OCV by using a polynomial func-
tion, nor vterm and SOC. In a platform which mixed experimental in-
struments and Simulink of Matlab, the parameters of LIB models were 
identified with the Optimization Toolbox of Matlab (Miniguano, Bar-
rado, Lazaro, Zumel, & Fernandez, 2020). Whereas, this parametric 
estimation procedure requires complicated interfaces between the data 
logger and Matlab. Moreover, the Optimization Toolbox of Matlab is 
designed for general optimization problem. It may be not appropriate to 
use the toolbox for identifying parameters of battery due to its distinc-
tive fitness landscape. 

Based on the above observations, this paper proposed a cooperative 
co-evolution differential evolution (CCDE) algorithm to identify pa-
rameters of LIB. First, to describe the dynamic behaviors of battery, we 
presented an ECM with first-order RC network. Without making any 
assumption or approximation, improved Euler’s numerical method was 
utilized to solve the differential equations directly. Second, an opti-
mizing objective function was built to minimize errors between the true 
and optimized terminal voltages. In that optimization model, parame-
ters of battery (R0, RP and CP) and vOCV(t) at each sampling point were 
considered as variables to be optimized, resulting in a very high- 
dimension problem. Third, such an optimization problem was trans-
formed into a large scale optimization problem (LSOP). Based on the 
character of parameters identification, we proposed a new m-decom-
position method which is different from general grouping methods for 
benchmark functions and its corresponding differential evolution (DE) 
algorithm to solve this LSOP. Fourth, to demonstrate effectiveness of the 
proposed methodology, comprehensive experiments on two commonly 
used dynamic test datasets were conducted, compared with seven state- 
of-the-art CC algorithms. 

The main advantages of this methodology are listed as follows: 

The proposed methodology showing generality and universality can 
be applied for various models of battery, such as ECMs (first-order, 
second-order, et al), electrochemical models, and other coefficients 
in math models of battery. Besides, the dimension/length of pa-
rameters in a model is allowed to be quite high. 
Different from LS method and other gradient-based methods, this 
proposed methodology does not assume that models of battery are 
differential. This is a primary advantage compared with LS methods. 
This advantage allows the problem to be optimized could be with 
almost any non-linear characters, such as non-convex, discontinuity, 
many local optima, et al. 
The proposed method is a global optimization algorithm. It is supe-
rior to LS which is a local optimization method. 

The main contributions of this methodology are shown as follows: 

The proposed CCDE methodology can be applied for any ECM of 
battery with non-linearization, without any linearization or pre- 
assumptions. When identifying parameters of battery based on 
ECM, vOCV is a time-varying and non-linear variable. Most existing 
works made vOCV linearized or partially linearized during a dynamic 

testing process. Also, some studies built a model for vOCV and opti-
mized its corresponding coefficients. In fact, it is difficult to obtain 
satisfactory precision in practical applications. In this investigation, 
vOCV during the whole dynamic test procedure were optimized as 
well as parameters of battery based on the measured load current and 
terminal voltage. In other words, the proposed methodology can deal 
with parameters identification of battery with any non-linear 
characters. 
Parameters identification of battery was transformed into a LSOP. 
Based on the ECM of battery and measured datasets of current and 
voltage, optimal parameters and OCV curve were optimized simul-
taneously, making the OCV curve most fitted to measured data. 
Compared with Kalman filter and observer-based methods, the pa-
rameters of battery could be globally optimal by using this meth-
odology, and this method was not sensitive to non-linearity of the 
system. 
Considering the character of parameters identification of battery, a 
new m-decomposition method and its corresponding optimizer were 
proposed. For general LSOPs, there are no overlapped variables in 
different sub-populations. In this paper, the optimal parameters of 
battery found so far were allotted to each sub-population in every 
updating cycle during evolving. As a result, the final optimal pa-
rameters of battery are the globally optimized variables which are 
consistent with the whole measured load current and terminal 
voltage. 

The rest part of this paper is organized as follows: Section 2 builds up 
the ECM for parameters identification of LIB. Section 3 gives a full 
description on the proposed CCDE algorithm in details. Section 4 con-
ducts comprehensive experiments to test the performance of the pro-
posed method on different dynamic test profiles. Finally, the whole work 
is summarized in Section 5. 

2. Problem formulation of parameters identification for battery 

This part builds up an overall ECM for parameters identification of 
LIB, and provides numerical solution. To simulate the dynamic charac-
ters of battery, Section 2.1 builds up a first-order RC model of battery. By 
using numerical integration method, the differential equations are 
solved. Section 2.2 formulates the math model of this optimization 
problem. 

2.1. First-order RC model of battery and numerical solution 

Parameters identification of battery is based on ECMs. Thus, an ECM 
which describes the static and dynamic behaviors of battery should be 
built up for practical applications. The ECM method has been widely 
used due to its clear mathematical expression and less parameters and 
relatively easy identification (Dubarry & Liaw, 2007). For LIBs, the first- 
order RC model that is also called the Thevenin model, revealing su-
periority over other ECMs (Zheng et al., 2016) was adopted in this study. 

Fig. 1. First-order RC model of lithium-ion battery.  
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It should be noted that, although first-order model was adopted in this 
paper, the proposed methodology could be applied for other ECMs with 
more complex structures. Fig. 1 shows the ECM of LIB. 

As shown in Fig. 1, the first-order RC model is composed of an ideal 
voltage source vOCV, an inner resistance R0 and an RC paralleled circuit 
which is used to simulate polarization effect. According to Kirchhoff’s 
voltage and current law, by introducing polarization resistance RP and 
polarization capacitance CP, the math equations of the adopted battery 
model can be described as follows: 
⎧
⎨

⎩

dvC

dt
=

iL

CP
−

vC

RPCP

vterm = vOCV + iLR0 + vC

(1)  

Where, vC denotes the voltage of CP. iL represents the load current. vOCV 
is the open-circuit voltage of battery. vterm denotes the terminal voltage 
of battery. These variables in Eq. (1), excluding parameters of battery 
(R0, RP, CP), vary versus sampling time t. 

To solve this differential equation in Eq. (1), modified Euler’s 
method (Allahviranloo & Salahshour, 2011); Kamrani, Hosseini, & 
Hausenblas, 2018) was used in this work. After that, the math model of 
battery can be discretized as follows: 
⎧
⎨

⎩

vC(k) = vC(k − 1) +
1
2

h(K1 + K2)

v̂term(k) = vOCV(k) + iL(k)R0 + vC(k)
(2)  

Where, k represents the sampling time index. h denotes step size which 
also can be represented as Δk. K1 = iL(k)/CP - vC(k-1)/RPCP, K2 = iL(k)/CP 
- (vC(k-1) + hK1)/RPCP. vterm with “^” denotes the terminal voltage is an 
estimated value which is used to compare with the true value. By using 
Eq. (2), given iL(k), vC(k-1), vOCV(k) and constant parameters which are 
R0, RP and CP, the estimated vterm(k) can be calculated to compare with 
the measured terminal voltage. Conversely, with iL(k), vC(k-1), vOCV(k) 
and vterm(k), the parameters of battery can be identified. However, vOCV 
which maps with SOC is a non-linear variable varying with time. Fig. 2 
shows an example of OCV curve during DST test. As a result, least-square 
(LS) method is not suitable for identifying the parameters of battery due 
to the non-linearization of the model. This is because the function of 
OCV with non-linearity is unknown to us. To address this issue, the 
authors tried to optimize the parameters and vOCV simultaneously by 
using a proposed cooperative co-evolutionary (CC) DE algorithm. The 
optimization math model of the problem will be built in the next section. 

2.2. Optimizing model of parameters identification 

This part gives the optimization objective function and constraints 
for identifying parameters of battery. This investigation is to find 
optimal parameters (R0, RP and CP) and vOCV to minimize the error be-
tween estimated and measured terminal voltage. Datasets of current and 
terminal voltage are used to verify the estimated terminal voltage. Thus, 
the optimizing objective function was built as follows: 

min fit(x) =
∑kmax

k=1
|v̂term(k) − vterm(k)| (3)  

Where, \* MERGEFORMAT denotes the estimated terminal voltage at 
kth time step, vterm(k) represents the measured terminal voltage at kth 
time step. kmax denotes total number of data points in a dataset. £ de-
notes the single row vector to be optimized in the above model, showing 
the variables as follows: 

x = [R0,RP,CP, vOCV (k) ], k = 1, 2, ..., kmax (4) 

In addition, there are some constraints which should be satisfied for 
identifying parameters of battery. The constraints are shown as follows: 
⎧
⎪⎪⎨

⎪⎪⎩

R0 > 0
RP > 0
CP > 0

VL⩽vOCV(k)⩽VU

(5)  

Where, VL and VU represent the lower and upper cut-off voltage of 
battery, respectively. In this paper, the variable which violates its upper 
or lower bound will be re-initialized within the legal range. 

Here, the authors would like to talk about the dimension of this 
optimization problem. Taking DST for 50% battery level at 25 ◦C as an 
example, there are up to 9501 data points. After discarding the initial 
part data of charging and discharging, kmax is up to 6650. That means the 
dimension of an optimization problem D should be set to kmax + 3 =
6653. This is the reason why many previous works simplified vOCV to a 
polynomial function or even linear function. As we discussed in the 
introduction, such a linearization or simplification for vOCV will lead to 
misuse of identification methods and reduction of SOC estimation ac-
curacy. To tackle this problem, this paper insisted on optimizing the 
parameters of battery and vOCV simultaneously by using the proposed 
cooperative co-evolutionary DE algorithm without any assumption to 
simplify the math model. The biggest advantage of this methodology is 
that, the model with the identified parameters is most consistent with 
the nonlinear characteristics of the system and the actual measured 
current and voltage. Due to the very big dimension D of the optimization 
problem, this problem should be classified as large scale optimization 
problem (LSOP). In the next section, we present a new cooperative co- 
evolutionary DE algorithm with local search strategy to solve this 
problem. 

3. The proposed method 

This part fully describes the proposed methodology. Section 3.1 il-
lustrates the motivation of the proposed methodology. Section 3.2 gives 
a review of related work on decomposition methods. Section 3.3 takes 
standard DE algorithm as an example to introduce the optimizer. Section 
3.4 presents the proposed cooperative co-evolutionary (CC) DE algo-
rithm and the framework of the presented methodology. Section 3.5 
shows the implement of the proposed method for identifying 
parameters. 

3.1. Motivation 

A good number of papers have investigated the parameters of LIB 
based on various models. In the majority of their research, some key 
variables, such as vOCV and SOC, have been modeled up as some complex 

Fig. 2. A vOCV curve during DST for 50% battery level at 25 ◦C.  
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functions. However, it is quite difficult to build up such a function 
accurately. Taking DST data for 50% battery level at 25 ◦C as an 
example, given a set of referenced parameters, the vOCV curve at each 
sampling time step k was plotted as shown in Fig. 2. Such a variable is 
hard to be presented by using a polynomial or exponential function 
accurately. If more complicated dynamic test is used, e.g. FUDS, its non- 
linearity and fluctuation will become more violent. Therefore, this drove 
the authors to identify the key parameters in ECMs directly on based on 
measured iL and vterm. On the other hand, as we claimed in the intro-
duction, LS and its variants are widely used for identifying parameters of 
LIB due to its simplicity, but it is not a global optimal algorithm. For non- 
convex problems, it will be easily trapped by local optima or saddle 
points and never escapes. Based on our previous experimental results, 
the problem of identifying parameters of LIB showed some characters of 
multi-modal problems. That is to say, essentially, LS is not suitable for 
solving the this problem. This also drove us to develop a new method-
ology to address this issue. 

3.2. Related work on decomposition method 

CC methodology can effectively deal with an LSOP by cooperatively 
optimizing the lower-dimensional sub-problems which are obtained 
through decomposition (Ren et al., 2019). Decomposition method plays 
an important role in improving the performance of CC. The early CC 
algorithms divided an D-dimensional problem into D sub-problems with 
one dimension (Bergh & Engelbrecht, 2000; Liu, Yao, Zhao, & Higuchi, 
2001). A splitting-into-half decomposition strategy was used for 
designing the cooperative co-evolutionary DE algorithms (Potter & De 
Jong, 2000; Shi, Teng, & Li, 2005). A general decomposition guideline 
for PSO was suggested to divide an D-dimensional problem into n s- 
dimensional sub-problems where ns = D and s ≪ D (van den Bergh & 
Engelbrecht, 2004). In addition, some researchers developed other 
decomposition methods on non-separable LSOPs, such as random 
decomposition methods (Omidvar, Li, Yang, & Yao, 2010; Yang et al., 
2008), learning-based decomposition methods (Ge, Sun, Tan, Chen, & 
Chen, 2017; Ge, Sun, Yang, Yoshida, & Liang, 2015; Sun, Yoshida, 
Cheng, & Liang, 2012). delta grouping (Omidvar, Li, & Yao, 2010) and 
differential grouping (Hu, He, Chen, & Zhang, 2017; Mei, Omidvar, Li, & 
Yao, 2016; Omidvar, Li, Mei, & Yao, 2014; Omidvar, Yang, Mei, Li, & 
Yao, 2017). Based on these decomposition/grouping methods, we would 
like to give a general structure of CC for solving LSOPs to make it clearer. 
The pseudo code of general CC is shown in Algorithm 1.  

Algorithm 1. The pseudo code of general CC. 
Input: NP, MAX_FES, MAX_FESsub, D, Xmin, Xmax, N 
Output: fit(x*), x* 
1[fit(X), X] ← initialization(NP, D, Xmin, Xmax); 
2[fit(x*), x*] ← sort(fit(X), X); 
3[Xsub] ← decomposition(X, N); % Xsub = {Xsub,1, …, Xsub,n, …, Xsub,N} 
4FES ← NP; 
5while FES ≤ MAX_FES 
6 for n ← 1 to N 
7 [Xsub,n, x*] ← optimizer(Xsub,n, MAX_FESsub, x*); 
8 FES ← FES + MAX_FESsub; 
9 end 
10end   

From the general framework of CC algorithm, the whole population is 
grouped into N sub-populations which contain NP individuals but with 
partial dimensions. For each sub-population, an optimizer is used to 
update the sub-population and the best individual x* at the partial di-
mensions. This procedure is looped until the termination condition is 
met. 

Although the general CC algorithm has provided an effective tool to 
deal with LSOPs, these techniques were developed for general optimi-
zation problems. The parameters identification of battery requires an CC 
framework and optimizer with specific and targeted operations. It may 

be not suitable to just simply incorporate general CC algorithm into 
parameters identification of battery. Later in this work, a more targeted 
CC and an optimizer with a local search strategy will be presented. In 
this next section, standard DE algorithm as an optimizer is described. 

3.3. DE algorithm 

Generally speaking, the conventional DE algorithm consists of four 
operations, which are initialization, mutation, crossover and selection. 
The last three operations are looped until the maximum functional 
evaluations (MAX_FES) is exhausted. 

3.3.1. Initialization 
Similar to other EAs, DE algorithm is a population-based stochastic 

search method which seeks for a global optima. The population consists 
of NP D-dimensional real-valued vectors, in which each vector, usually 
called a target vector, is denoted as Xi,G = {x1

i,G, x2
i,G, …, xD

i,G}, i = 1, 2, 
…, NP. NP is the size of the population, D is length or dimension of the 
target vector, G denotes the index of generations. Then, within the upper 
limits (Xmax = {x1

max, x2 
max, …, xD

max}) and lower limits (Xmin= {x1
min, 

x2 
min, …, xD

min}) of the search space, each target vector is uniformly 
randomized as follows: 

Xi = Xmin +U[0, 1](Xmax − Xmin) (6)  

where, U[0, 1] is a row vector of random numbers uniformly generated 
within [0, 1]. 

3.3.2. Mutation 
After initialization, for the corresponding target vector Xi,G, a mu-

tation operator is executed to generate each mutant vector Vi,G in the 
current population. We will list five most widely used mutation strate-
gies as follows (Das, Mullick, & Suganthan, 2016): 

DE/rand/1: 

Vi,G = Xri
1 ,G

+F
(

Xri
2 ,G

− Xri
3 ,G

)
(7) 

DE/best/1: 

Vi,G = Xbest,G +F
(

Xri
1 ,G

− Xri
2 ,G

)
(8) 

DE/current-to-best/1: 

Vi,G = Xi,G +F
(
Xbest,G − Xi,G

)
+F

(
Xri

1 ,G
− Xri

2 ,G

)
(9) 

DE/best/2: 

Vi,G = Xbest,G +F
(

Xri
1 ,G

− Xri
2 ,G

)
+F

(
Xri

3 ,G
− Xri

4 ,G

)
(10) 

DE/rand/2: 

Vi,G = Xri
1 ,G

+F
(

Xri
2 ,G

− Xri
3 ,G

)
+F

(
Xri

4 ,G
− Xri

5 ,G

)
(11)  

where, ri
1, ri

2, ri
3, ri

4, ri
5 are exclusive integers randomly selected within 

{1, 2…., NP}, and the indices are also different from i. F is called scale 
factor which is usually a positive value. Xbest,G is the best target vector in 
current population at Gth generation. 

After mutation, each mutant vector Vi,G may violate the upper and 
lower limits of the search space. For many real engineering problems, 
such as parameters identification of LIB in this paper, it is not allowable 
to violate upper and lower limits. In this paper, the following operators 
are used to avoid violating these constraints: at jth dimension, if vj

i,G is 
bigger than xj

max, then vj
i,G will be set to xj

max; if vj
i,G is smaller than xj

min, 
then vj

i,G will be set to xj
min. The algorithmic description on this operator 

is shown in lines 7 to 10 in Algorithm 2. 

3.3.3. Crossover 
In this operator, each trial vector Ui,G in current population at Gth 
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generation is formed by mixing the corresponding target vector Xi,G and 
mutant vector Vi,G. Usually, a binomial crossover scheme is used as 
follows (Das & Suganthan, 2011): 

uj
i,G+1 =

⎧
⎨

⎩

vj
i,G+1, if randj⩽Cr or j = jrand

xj
i,G, otherwise

, j = 1, 2, ...,D (12)  

where, jrand is designed as a randomly generated integer within {1, 2, …, 
D} to make the trial vector different from the corresponding target 
vector at least at one dimension. randj is a randomly generated number 
obeying uniform distribution within [0, 1]. Cr is crossover rate which is 
usually a positive value. 

3.3.4. Selection 
In this operator, DE algorithm adopts a one-to-one comparison be-

tween the target vector Xi,G and the trial vector Ui,G. If the fitness value 
of Ui,G is less than or equal to the fitness value of Xi,G, then the target 
vector will be replaced by the trial vector. Otherwise, the target vector 
will be kept unchanged in the next generation: 

Xi,G+1 =

{
Ui,G+1, if f

(
Ui,G+1

)
⩽f

(
Xi,G

)

Xi,G, otherwise (13)  

where, f(•) is the objective function to be minimized. In the above 
equation, it is helpful for the population to accept the trial vector with 
then equal fitness value, resulting in a more diversified population. The 
algorithmic description of standard DE is shown as Algorithm 2. 

Algorithm 2. The pseudo code of standard DE algorithm.  

Input: NP, MAX_FES, D, Xmin, Xmax, F, Cr 

Output: fit(x*), x* 
1 [fit(X), X] ← initialization(NP, D, Xmin, Xmax); 
2 G ← 1, FES ← NP; 

(continued on next column)  

(continued ) 

Input: NP, MAX_FES, D, Xmin, Xmax, F, Cr 

3 while FES ≤ MAX_FES 
4 for i ← 1 to NP 
5 [Vi,G] ← mutation(Xi,G); 
6 for j = 1 to D 
7 [vj

i,G] ← min(vj
i,G, xj

max); 
8 [vj

i,G] ← max(vj
i,G, xj

min); 
9 end 
10 [Ui,G] ← crossover(Vi,G); 
11 [Xi,G+1] ← selection(Ui,G, Xi,G); 
12 FES ← FES + 1; 
13 [fit(x*), x*] ← min(x*, Xi,G+1); 
14 end 
15 G = G + 1; 
16 end  

3.4. The proposed CCDE algorithm 

3.4.1. m-decomposition 
In this section, the proposed CC framework is described. First, the 

character of the problem in this paper should be reviewed. Based on the 
math model built up in Section 2, we try to find the most fitted £ shown 
in Eq. (4) according to measured current and voltage during dynamic 
tests for battery. R0, RP, CP are the parameters of battery to be optimized, 
and the three values do not change with time. vOCV is a non-linear var-
iable varying versus time, and it is strongly co-related with SOC. Here is 
an example shown in Fig. 2 to illustrate the character of vOCV curve 
during a DST procedure. 

In Fig. 2, vOCV does not vary dramatically versus time, but fluctuate 
frequently. For such a variable, accurate approximations will not be 
resulted by using interpolation methods nor curve fittings. Thus, the 
authors believed that identifying parameters at each sampling time k 
could ensure the parameters and model are most consistent with the 

Fig. 3. Block diagram of the proposed decomposition method for a single individual. N = m = 50, D = 3 + 6650.  
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measured values. This is the reason why we transform the problem into a 
LSOP. Based on these characters of parameters identification for battery, 
we proposed a unique decomposition/grouping method. First, R0, RP, CP 
are chosen into every sub-populations. Because the three parameters are 
constant and fitted to all sampled data, it is reasonable to optimized the 
three parameters in each cycle. Second, vOCV is grouped evenly at every 
m sampling intervals. Different from other grouping methods, such a 
decomposition method is helpful to reflect the overall distribution of 
vOCV versus time. Taking DST for 50% battery level at 25 ◦C as an 
example, there are up to 9501 data points. After discarding the initial 
part data of charging and discharging, kmax is up to 6650. That means, 
excluding R0, RP and CP, the dimension D of the problem is 6650. 
Assuming that m is set to 50, then the number of sub-populations is N =
m = 50. As a result, the dimension of each sub-population is D/m = 133. 
Fig. 3 shows an illustration on this decomposition method which is 
named m-decomposition in this paper. 

So far, a block diagram of the presented m-decompostion method 
was illustrated. After initialization, the total population X, which is 
enclosed within a rectangular filled with slight mauve, is a NP * D ma-
trix. Excluding R0, RP and CP, at every m dimension/interval in each 
single individual Xi, vOCV(k) is evenly sampled to compromise an indi-
vidual in sub-population Xsub,n, where n = 1, 2, …, N. Such a m- 
decomposition method can dramatically reduce the dimension of the 
original LOSP. Besides, it could reflect the overall distribution of vOCV, 
compared with other complex grouping methods. Moreover, the pa-
rameters of battery, i.e., R0, RP and CP, are optimized in every sub- 
population. It could ensure the calculated parameters are globally 
optimal solutions, compared with LS methods. 

3.4.2. Mutation strategy 
Based on the above characters of this optimization model and the 

ranges of variables to be optimized in each sub-populations, a DE variant 
was proposed for solving this problem. Different from some famous and 
highly-cited DE variants with various mutation strategies, such as SaDE 
(Qin, Huang, & Suganthan, 2009), CoDE (Wang, Cai, & Zhang, 2011), 
EPSDE (Mallipeddi, Suganthan, Pan, & Tasgetiren, 2011), DMPSADE 
(Fan & Yan, 2015), MPEDE (Wu, Mallipeddi, Suganthan, Wang, & Chen, 
2016) and IMSaDE (Wang, Li, Yang, & Liu, 2018), we need a DE algo-
rithm with a good balance between exploration and exploitation. Ac-
cording to our previous experimental experience, we found this problem 
is probably a non-convex optimization problem with many local optima. 
Meanwhile, in each cycle/generation, MAX_FESsub for every sub- 
population is limited. And, vOCV is a continuous variable and does not 
vary greatly at adjacent sampling times. As a result, local searches in 
parallel are required. Thus, the new mutation strategy which is named as 
“current-to-pnbest” using a ring topology was developed as follows: 

Vi,G = Xi,G +F
(
Xpnbest,G − Xi,G

)
+F

(
Xri

1 ,G
− Xri

2 ,G

)
(14)  

Where, ri
1 and ri

2 are randomly selected indices of the left and the right 
target vectors of ith individual. In a ring-connected population topology, 
each individual has only two neighbors to share information with each 
other. That is to say, the ith individual only could communicate with the 
i-1th and i + 1th individual. In this paper, for ith target vector, the left 
target vector means the i-1th individual, and the right target vector 
denotes the i + 1th individual. For example, the 19th individual only 
connects with the 18th (the left target vector) and 20th (the right target 
vector) individual; the 20th individual only connects with the 19th (the 
left target vector) and 21th (the right target vector) individual, and so 
on. Such a population topology naturally builds up some overlapped 
niches (sub-populations) to search the solution space in parallel, without 
introducing any niching parameter. Xpnbest,G denotes the best personal 
best vector which is chosen from Xpbest,i, Xpbest,i-1 and Xpbest,i+1. Different 
from previous designs in DE, the authors built up local memory for each 
target vector to “anchor” the whole population, avoiding being trapped 
by local optima. Such a mutant vector shown as Eq. (14) will search 

within a restricted niche with three members without introducing any 
niching parameters. In other words, the design of Xpbest is quite similar to 
the personal best swarm which is denoted as Pi in PSO. To make the 
proposed mutation operator more understandable, a full description on 
how to generate a mutant vector using this mutation operator is pre-
sented in Fig. 4. In a ring topology, each target vector only connects with 
its left and right neighbors by index. Every target vector has its own 
personal best named as Xpbest. 

Here, we would like to state the motivation and reason of designing 
such a mutation strategy. As well known, mutation operator plays a very 
significant role on performances of DE algorithms. For solving this 
problem, mutant vectors should be generated by using very few target 
vectors within a restricted neighborhood to locate local optima as many 
as possible. Therefore, the ring topology, which is “the slowest, most 
indirect communication pattern” (Kennedy & Mendes, 2002), was 
adopted as the population topology in this study. As a result, by using 
such a topology, each target vector and their immediate neighbors build 
up a niche automatically, without introducing any niching parameters. 
Besides, in PSO algorithm, we have noticed a quite unique character-
istic. That is, each particle can keep its own memory or personal best. All 
these personal bests constitute a local memory population which is very 
stable, behaving like “anchor” points to provide the best solutions found 
so far. Such a mutation strategy may be very helpful to deal with the 
problem in this paper. 

3.4.3. Parametric adaptions 
Apart from mutation strategy, adaptions of the control parameters 

which are F and Cr also play crucial role on performance of DE algo-
rithms. To reduce computational burden and avoid time-consuming 
adaptions of F and Cr, the authors adopted a adaption as follows: 

Fi,G+1 =

{
Fl + r1(Fu − Fl), if r2 < τ1

Fi,G+1, otherwise (15)  

Cri,G+1 =

{
r3Cru, if r4 < τ2
Cri,G, otherwise (16)  

Where, r1, r2, r3, and r4 are random numbers which obey uniform 

Start

For ith target vector, select the fittest personal 
best from {Xpbest,i-1, Xpbest,i, Xpbest,i+1} as Xpnbest

rand<0.5?

Xri1 = Xi-1
Xri2 = Xi+1

Xri1 = Xi+1
Xri2 = Xi-1

Y N

Generate Vi according to Eq. (14)

Output Vi

End

Fig. 4. The flowchart of generating a mutant vector by “current-to-pnbest” 
using a ring topology. 
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distribution within [0, 1]. τ1 and τ2 are two control parameters which 
are both set to 0.1. Fu and Fl are set to 0.9 and 0.1, respectively. Different 
from the adaption of Cr in jDE (Brest, Greiner, Bokovi, Mernik, & Zumer, 
2006), Cru = 0.5 was adopted to limit Cr within [0, 0.5], reinforcing the 
local search capability of the proposed method. In fact, the reason why 
we have designed such a parametric adaption for F and Cr is that, this 
mechanism is simple but effective. Besides, the settings of τ1 and τ2 (τ1 =

τ2 = 0.1) have been well proven and widely used. The problem of 
identifying parameters of battery has been transformed into a LSOP, so it 
is required a large MAX_FES to solve this problem. We should try to 
reduce total time cost for running simulations, without developing 
complex parametric adaptions. 

3.4.4. General framework 
In summary, by incorporating the m-decomposition method and new 

DE algorithm, the algorithmic description of the proposed CCDE for 
parameters identification of battery is shown as Algorithm 3.  

Algorithm 3. The pseudo code of CCDE. 

(continued on next column)  

(continued ) 

Algorithm 3. The pseudo code of CCDE. 

Input: NP, MAX_FES, MAX_FESsub, D, Xmin, Xmax, m 
Output: fit(x*), x* 
1 [fit(X), X] ← initialization(NP, D, Xmin, Xmax); 
2 [fit(x*), x*] ← sort(fit(X), X); 
3 N ← m, G ← 1; 
4 [Xsub, fitsub] ← m-decomposition(X, m, D); % Xsub = {Xsub,1, …, Xsub,n, …, Xsub,N} 
5 FES ← NP + NP*N; 
6 while FES ≤ MAX_FES 
7 for n ← 1 to N 
8 [x*sub,n, Xsub,n] ← update_sub_best(x*, Xsub,n); 
9 FES ← FES + 1, FESsub ← 0; 
10 while FESsub ≤ MAX_FESsub 
11 for i ← 1 to NP 
12 [Vsub,n,i,G] ← new_mutation(Xsub,n,i,G); % Eq. (14) 
13 for j ← 1 to m + 3 
14 if vj

sub,n,i,G > xj
max || vj

sub,n,i,G < xj
min 

15 [vj
sub,n,i,G] ← re-initialize(xj

min, xj
max); 

16 end 
17 end 

(continued on next page) 

Start 

Set parameters of CCDE, initialize the population

FES>MAX_FES?

For each target vector in ith Xsub, mutation operator 
is conducted by using Eq. (14), re-initialize the 

variables violating upper and lower limits

F and Cr are adapted according to Eq. (15-16)

Crossover operator is executed according to Eq. (12)

End 

Split the population into sub-populations by using m-decomposition

Selection operator is executed according to Eq. (13)

Update best x*sub and its fitness value

FESsub>MAX_
FESsub?

Update global best x* and its fitness value

Output global best x* as the final solution

Every loop for all 
vectors in ith Xsub
is called a cycle or 
sub-generation.

N

Y

N

Y

Fig. 5. The flowchart of CCDE algorithm.  
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(continued ) 

Algorithm 3. The pseudo code of CCDE. 

18 [Usub,n,i,G] ← crossover(Vsub,n,i,G); 
19 [Xsub,n,i,G+1] ← selection(Usub,n,i,G, Xsub,n,i,G); 
20 FESsub ← FESsub + 1, FES ← FES + 1; 
21 [Fsub,n,i,G+1, Crsub,n,i,G+1] ← adaption(Fsub,n,i,G, Crsub,n,i,G); % Eq. (15–16) 
22 [fit(x*sub,n), x*sub,n] ← min(x*sub,n, Xsub,n,i,G+1); 
23 end 
24 end 
25 [x*] ← update_global_best(x*, x*sub,n); 
26 FES ← FES + 1; 
27 G = G + 1; 
28 end 
29 end  

It is noted that, there are some important modifications in Algorithm 3 
compared with other CC algorithms. First, in line 4, a new m-decom-
position method for solving parameters identification of battery was 
proposed. The presented grouping method divided the whole population 
into N sub-population with the three parameters (R0, RP and CP) over-
lapped in each sub-population. This is a targeted improvement. Second, 
in line 12, the proposed mutation strategy which was designed to 
improve the exploitation capability was used. Third, in line 21, F and Cr 
are self-adapted to speed up convergence. Fourth, in line 8 and 25, an 
update operator was developed to renew global best individual x*. 
When a x*sub,n with better fitness value is found, then the corresponding 
and overlapped part in x* should be updated. Note that, in line 25, 
partial variables in x* will be replaced by x*sub,n after each cycle/sub- 
generation, resulting in possibly deteriorated fitness value of x* with 
full length. It is normal and unavoidable when a CC methodology is 
used. For general CC algorithms, all the sub-populations are not over-
lapped among each other. In this paper, considering the importance of 
the three parameters (R0, RP and CP) while estimating vOCV, the three 
parameters were designed to renew x*sub,n and x* when calling upda-
te_sub_best(⋅) and update_global_best(⋅), respectively. That is to say, in 
every cycle/sub-generation, R0, RP and CP, as a part of x*sub,n, will be 
continuously optimized with vOCV at different sampling points. That is 
the reason why the proposed operator is different from other CC algo-
rithms for solving general LSOPs. 

For the convenience of understanding, we drew general the frame-
work of the proposed CCDE as shown in Fig. 5. In the next section, we 
will introduce the steps on how to apply this algorithm for identifying 
parameters of battery. 

3.4.5. CCDE applied for identifying parameters of battery 
In this part, the authors illustrate the steps of how to identify pa-

rameters of battery by using the proposed CCDE algorithm. The pro-
cedures are listed below: 

Step1 Load dynamic test data. Measured data from different dy-
namic tests (DST/FUDS) is loaded. Specifically, under a given ambient 
temperature T, load current iL(k) and terminal voltage vterm(k) are pre-
pared for optimizing, where k = 1, 2, …, kmax. iL(k) and vterm(k) are 
sampled at a real interval in dynamic tests. The data of initial charging 
and discharging are eliminated, and the abnormal data points are also 
cleaned. 

Step2 Set simulation parameters. D is set to kmax + 3. Considering the 
value of D, we set simulation parameters, such as MAX_FES, NP and the 
number of independent runs. To make a balance between computational 
burden and accuracy, m and the number of sub-populations N are set. 
Based on the value of m, MAX_FESsub is set. 

Step3 Run simulation. Each single simulation is repeated for some 
independent runs. For each run, R0, RP and CP are randomly initialized 
as positive values, and vOCV(k) is randomly initialized within [VL, VU]. 
By inputting simulation parameters in Step2 into CCDE, for minimizing 
the objective fitness value of Eq. (3), optimal parameters of parameters 
and vOCV(k) will be outputted. After finishing all simulations, the sta-
tistical results of fitness values and the best solutions (x*) are 

summarized. 

4. Experimental results 

This section reports the experimental results of the proposed CCDE 
and compared algorithms on parameters identification of battery. Sec-
tion 4.1 gives experimental datasets, settings and involved algorithms. 
Section 4.2 conducts experiments to test the performance of CCDE with 
different m values. Based on the experimental results, m value and the 
corresponding MAX_FES was set for parameter identification of LIB. 
Section 4.3 conducts experiments to show the influence of each 
component on the performance of CCDE. Section 4.4 comprehensively 
tests the performance of CCDE compared with 7 state-of-the-art CC al-
gorithms on DST and FUDS data for identifying parameters of LIB. 
Section 4.5 reports experimental results of CCDE and 7 classic DE al-
gorithms. 4.1 Experimental datasets, settings and involved algorithms. 

All test data in this paper comes from battery research group of 
Center for Advanced Life Cycle Engineering (CALCE) in University of 
Maryland. Related datasets can be downloaded by visiting https://web. 
calce.umd.edu/batteries/data.htm. The INR 18650-20R cell was chosen 
as the test target. All the tests were conducted at 25 ◦C. Basic de-
scriptions on this battery are shown in Table 2. 

Dynamic test profiles like dynamic stress test (DST) is the most 
commonly used test procedure were used to identifying parameters of 
battery and to validate SOC. DST simulates a dynamic discharge process 
which is a typical driving cycle that is often used to evaluate various 
battery models and SOC estimation algorithms. two test profiles for a 
battery at 25 ◦C is shown in Fig. 6(a). Apart from DST, some more 
complicated dynamic current profiles are also widely used to evaluate 
the SOC estimation results, such as federal urban dynamic schedule 
(FUDS) (Duong, 2000) whose dynamic profile is shown in Fig. 6(b). 
FUDS test is more sophisticated than DST in terms of the changing/ 
discharging rate of the current. All datasets of the dynamic tests can be 
downloaded via https://web.calce.umd.edu/batteries/data.htm. 

In this work, a Windows 7 operating system and the MATLAB 2010b 
development environment are used as the simulation environment. The 
hardware platform is a PC with the following features: Intel(R) Core 
(TM) i5-3230 M CPU @ 2.60 GHz 2.60 GHz, 8.00 GB RAM. 

It is worth noting that, different from evaluating algorithms on 
benchmark functions, some indicators, such as successful rate (SR) and 
minimum FES to find x*, could not be used or compared for evaluating 
methods on identifying parameters of battery in this paper. This is 
because for a real-world problem, we have no prior knowledge of exact 
values of x*. For evaluating an algorithm on identifying parameters of 
battery, accuracy of fitness value is a primary criterion. Also, conver-
gence speed and time complexity are required to evaluating the involved 
algorithms in general. 

4.1. Experiments on CCDE with different m values 

In this part, we conduct experiments to test the proposed CCDE with 
different m values, i.e., we test the sensitivity of m on CCDE. After that, 
the m value with the best performance was chosen for other experi-
ments. In this paper, the authors believe that m significantly affect the 
performance of CCDE. Other simulation parameters are strongly related 

Table 2 
Basic specifications of INR 18650-20R battery.  

Parameters Values 

Capacity Rating 2000 mAh 
Cell Chemistry LNMC/Graphite 
Weight 45.0 g 
Dimensions 18.33 ± 0.07 mm 
Length 64.85 ± 0.15 mm 
Nominal voltage 3.6 V 
Upper/lower cut-off voltage 4.2 V/2.5 V  
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with m, such as Dsub, NP, MAX_FESsub, and MAX_FES. For instance, kmax is 
6650 in DST data for 50% SOC level at 25 ◦C. When m is set to 665, i.e., 
the whole population is divided into 665 sub-populations, Dsub for each 
sub-population is consequently 13 (R0, RP, CP and 10 vOCV values). Based 
on Dsub and the character of parameters identification for battery, NP is 
set to 20 and MAX_FESsub is set to 4000. Each sub-population should be 
optimized at least twice, so MAX_FES = MAX_FESsub*m*2 = 5320000. 
When m is set to 50, Dsub is consequently 136. As a result, NP should be 
set to at least 200, and MAX_FESsub should be set to at least 500000. And 
MAX_FES should be set to 50000000. Obviously, less groups with bigger 
size of sub-population will significantly increase computational cost and 
difficulty. Therefore, we adopted the m value which represents more 
groups with smaller size of sub-population. Nevertheless, extra experi-
ments are required to make this setting more reliable. Table 3 shows 
CCDE with different parametric settings. NP which should be bigger 

than Dsub is conventionally set to [3*D, 5*D] for each sub-problem. In 
Table 3, a criterion of setting parameters was followed. The criterion is, 
bigger Dsub requires much bigger NP and MAX_FESsub to make sure sub- 
populations converge. 

To test the performances of CCDEs with different m values, DST and 
FUDS datasets were used. The comprehensive results of all involved 
algorithms over 31 independent runs are reported in Table 4. Besides, 
we also conducted Wilcoxon rank sum test at a 0.05 significance level. 
For the involved algorithms, the same operators and control parameters 
were used for fair comparison. The best results with the minimum value 
in Table 4 are shown in bold. 

From the results reported in Table 4, we found that CCDE with small 
sub-populations outperformed CCDE with other settings. In fact, it is not 
surprising to obtain such a conclusion. For DST dataset, CCDE7 per-
formed similar to CCDE. For FUDS dataset, CCDE6 and CCDE7 also 
performed similar to CCDE. Moreover, the statistical results displayed a 
trend. That is, as m decreased, the performance of CCDE deteriorated 
obviously. It is an also an evidence that it is much difficult to optimize 
the sub-problem with bigger Dsub. Therefore, in this work, we set m to a 
relatively big value to reduce the size of sub-population. In summary, 
the presented experimental results demonstrated that the settings of 
CCDE in the following sections are reasonable. 

4.2. Influence of modified mechanisms on CCDE 

Before test the performance of the proposed CCDE compared with 
other state-of-the-art algorithms, we would like to conduct some 

Fig. 6. Battery test profiles for 50% battery level at 25 ◦C.  

Table 3 
CCDE algorithms with different m values and corresponding parametric settings.  

Algorithms m NP Fitness evaluations 

CCDE1 50 300 MAX_FESsub = 600000, MAX_FES = 6.00E + 07 
CCDE2 50 200 MAX_FESsub = 500000, MAX_FES = 5.00E + 07 
CCDE3 110 100 MAX_FESsub = 80000, MAX_FES = 1.76E + 07 
CCDE4 110 60 MAX_FESsub = 40000, MAX_FES = 8.80E + 06 
CCDE5 330 50 MAX_FESsub = 15000, MAX_FES = 9.90E + 06 
CCDE6 330 30 MAX_FESsub = 9000, MAX_FES = 5.94E + 06 
CCDE7 665 50 MAX_FESsub = 10000, MAX_FES = 1.33E + 07 
CCDE 665 20 MAX_FESsub = 4000, MAX_FES = 5.32E + 06  

Table 4 
Mean and variance of fitness values of CCDE with different simulation settings.  

Algorithms DST data FUDS data 

Mean Std W-test p-value Mean Std W-test p-value 

CCDE1 1.41E + 03 1.48E + 02 + 7.05E-07 1.91E + 03 1.95E + 03 + 4.25E-03 
CCDE2 1.47E + 03 7.90E + 02 + 7.05E-07 1.97E + 03 1.58E + 03 + 8.00E-03 
CCDE3 1.29E + 03 1.24E + 03 + 1.21E-03 1.74E + 03 1.74E + 03 + 8.85E-03 
CCDE4 1.24E + 03 1.25E + 03 + 1.53E-03 1.74E + 03 1.75E + 03 + 1.05E-02 
CCDE5 1.11E + 03 1.08E + 03 + 5.27E-03 1.69E + 03 1.68E + 03 + 2.86E-02 
CCDE6 9.57E + 02 9.55E + 02 + 8.85E-03 1.53E + 03 1.56E + 03 ≈ 7.90E-02 
CCDE7 6.15E + 02 4.24E + 02 ≈ 1.68E-01 1.21E + 03 1.22E + 03 ≈ 2.86E-01 
CCDE 3.59E þ 02 3.39E þ 02 – – 9.67E þ 02 1.00E þ 03 – –  
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experiments to test the influence of the developed mechanisms on the 
performance of CCDE. In Section 3.4, three modified mechanisms have 
been developed. The influence of m-decomposition method with 
different settings (m, NP and MAX_FES) on the performance of CCDE has 
been tested in Section 4.2. Therefore, CCDE with different mutation 
strategies, population topology and parametric adaptions will be tested 
in this section. CCDE-P1 denotes the proposed CCDE algorithm which 
adopts DE/rand/1 mutation strategy (Eq. (7)) and a full-connected/g- 
best population topology. This topology means every individual could 
exchange information with any other individual in the whole popula-
tion. CCDE-P2 represents the proposed CCDE which uses DE/rand/1 
mutation strategy and a ring topology. CCDE-P3 is CCDE adopting DE/ 
current-to-best/1 mutation strategy (Eq. (9)) and a full-connected pop-
ulation topology. CCDE-P4 is the proposed CCDE using DE/current-to- 
best/1 mutation strategy and a ring topology. The above four variants 
of CCDE use the proposed parameter adaptions as shown in Eq. (15–16). 
That means, we try to test the influence of mutation strategy and to-
pology on the performance of CCDE. CCDE-P5 denotes the proposed 
CCDE which uses a fixed parametric setting: F = 0.5, Cr = 0.9. CCDE-P6 
represents the proposed CCDE which adopts a random parametric 
setting for F and Cr. That is to say, at every iteration, F and Cr are ran-
domized by using a generator which obeys a uniform distribution within 
[0, 1]. CCDE-P7 is the variant of CCDE which uses the parametric 
adaption in jDE: Fl = 0.1, Fu = 0.9, Crl = 0, Cru = 1, τ1 = τ2 = 0.1. The 
above three variants of CCDE do not modify the mutation strategy and 
population topology. That means the influence of the proposed para-
metric adaptions will be tested. For DST data, kmax = 6650, Dsub = 13, 
MAX_FESsub = 4000, NP = 20, MAX_FES = 5.32E + 06. For FUDS data, 
kmax = 6946, Dsub = 14, MAX_FESsub = 4000, NP = 20, MAX_FES = 5.55E 
+ 06. The number of independent runs is set to 31. We also conducted 
Wilcoxon rank sum test at a 0.05 significance level. Experimental results 
of the above CCDE variants on DST and FUDS data are shown in Table 5. 

From the results reported in Table 5, we may conclude that the 
proposed mechanisms do affect the final performance of CCDE. First, 
based on both statistical and hypothetical results, these CCDE variants 
performed similarly, showing some common patterns. Second, mutation 
strategy coupled with population topology has a more significant impact 
on parameter adaption. CCDE variants with other mutation strategies 
and topologies (CCDE-P1 to CCDE-P4) performed slightly worse than 
CCDE variants with other parametric settings (CCDE-P5 to CCDE-P7) in 
general. Thus, we may conclude that mutation strategy is more 

important to some extent. Third, for identifying parameters of LIB, a ring 
topology seemed better than a full-connected topology. This is based on 
the observations: CCDE-P2 performed better than CCDE-P1, and CCDE- 
P4 performed better than CCDE-P3. Fourth, parametric adaptions also 
affected the performance of CCDE. From the experimental results we can 
see, self-adaptive tunning for F and Cr was better than fixed values. 
Additionally, there was no significant difference between the adaption 
from jDE and the proposed parametric adaption. This is because the 
tunning mechanisms of the two adaptions are similar. Overall, by 
incorporating the proposed mutation strategy, population topology and 
parametric adaptions, the presented CCDE has demonstrated its effec-
tiveness on parameters identification of LIB. 

4.3. Experimental results on DST and FUDS data 

In order to show effectiveness of the proposed CCDE method on 
parameters identification of battery, seven state-of-the-art CC algo-
rithms were chosen for comparison. In this section, the compared al-
gorithms are CSO (Cheng & Jin, 2015), BICCA (Ge et al., 2020), CHPSO- 
VIR (Ge et al., 2017), MA-SW-Chains (Molina, Lozano, Sanchez, & 
Herrera, 2011), TSPDG (Xue et al., 2020), RBLSO (Deng, Peng, Zhang, 
Yang, & Chen, 2019) and SEE (Yang, Tang, & Yao, 2018). CSO utilized a 
pairwise competitive strategy for the whole swarm. BICCA proposed a 
generalized framework with evolutions in the pattern space and search 
space. CHPSO-VIR firstly developed a strategy which used a small part of 
variable interactions to approximate the decomposition. MA-SW-Chains 
defined a local search indicator for each individual to guide the evolu-
tion. TSPDG employed variable interactions and population topology 
into the grouping process to improve the efficiency of optimization. 
RBLSO uses a principle of maximizing the fitness difference between 
learners and exemplars to improve the performance of the optimization 
algorithms. SEE used meta-models to find a better solution for a problem. 
Following the recommends of BICCA (Ge et al., 2020), L-SHADE (Tanabe 
& Fukunaga, 2014) was selected as the optimizer for these competitors. 
In this part, we followed the selections of the compared CC algorithms 
and the optimizer in BICCA (Ge et al., 2020). The parametric settings of 
the above methods were used as claimed in their original papers. The 
proposed CCDE used the modified version of DE algorithm as shown in 
Section 3.4. Based on the experimental results reported in Section 4.2, 
the values of m, NP and MAX_FES were set. Specifically, for DST data, 
kmax = 6650, Dsub = 13, MAX_FESsub = 4000, NP = 20, MAX_FES = 5.32E 

Table 5 
Mean and variance of fitness values of CCDE with different components.  

Algorithms DST data FUDS data 

Mean Std W-test p-value Mean Std W-test p-value 

CCDE-P1 5.97E + 02 4.48E + 02 + 6.38E-05 1.54E + 03 1.32E + 03 + 1.87E-02 
CCDE-P2 5.55E + 02 4.39E + 02 + 1.17E-02 1.27E + 03 1.26E + 03 + 2.17E-02 
CCDE-P3 6.07E + 02 5.63E + 02 + 3.98E-02 1.57E + 03 1.36E + 03 + 1.54E-03 
CCDE-P4 4.26E + 02 3.96E + 02 ≈ 2.97E-01 1.15E + 03 1.16E + 03 ≈ 6.83E-02 
CCDE-P5 5.02E + 02 4.37E + 02 + 3.59E-02 1.34E + 03 1.26E + 03 + 9.98E-03 
CCDE-P6 5.89E + 02 4.01E + 02 + 1.17E-02 1.46E + 03 1.22E + 03 + 4.32E-04 
CCDE-P7 4.38E + 02 3.77E + 02 ≈ 1.05E-01 1.09E + 03 9.97E þ 02 ≈ 5.74E-02 
CCDE 3.59E þ 02 3.39E þ 02 – – 9.67E þ 02 1.00E + 03 – –  

Table 6 
Statistical results of fitness values and hypothesis tests on DST data.  

Method Min Med Max Mean Std Wilcoxon-test p-value 

CSO 4.30E + 01 7.28E + 02 2.08E + 03 6.71E + 02 5.05E + 02 + 5.34E-04 
BICCA 6.50E + 01 8.14E + 02 2.22E + 03 5.48E + 02 8.37E + 02 + 1.61E-03 
CHPSO-VIR 3.69E + 01 8.21E + 02 2.38E + 03 7.70E + 02 7.88E + 02 + 6.24E-04 
MA-SW-Chains 4.63E + 01 6.40E + 02 1.92E + 03 7.39E + 02 6.17E + 02 + 1.20E-03 
TSPDG 4.82E + 01 8.22E + 02 1.76E + 03 8.08E + 02 4.66E + 02 + 5.66E-05 
RBLSO 5.42E + 01 4.93E + 02 2.13E + 03 6.35E + 02 6.99E + 02 + 3.72E-02 
SEE 4.62E + 01 4.50E + 02 2.27E + 03 5.94E + 02 6.42E + 02 ≈ 1.77E-01 
CCDE 3.57E þ 01 3.71E þ 02 7.72E þ 02 3.48E þ 02 2.11E þ 02 – –  
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+ 06. For FUDS data, kmax = 6946, Dsub = 14, MAX_FESsub = 4000, NP =
20, MAX_FES = 5.55E + 06. All the simulations were repeated for 31 
independent runs. The performance of one involved algorithm is eval-
uated based on the statistical results over the 31 independent runs. 

4.3.1. Experimental results on DST data 
First, DST data for 50% SOC level was used to test performance of the 

proposed method. In initial part of DST test, the battery was charged 
fully with 1A to 100% SOC, then the cell was discharged with 1A to 50% 
SOC. After that, dynamic stress test started. The dynamic part of this test 
procedure lasted from 28000 s to 34800 s. During the dynamic test 
procedure, kmax is 6650. For CCDE, m was set to 665 to build up a 
relatively small sub-population for convenience. Thus, NP was set to 20 
in this experiment. MAX_FESsub was set to 20*NP = 4000. The 

Table 7 
Best partial optimal solutions solved by the competitive algorithms on DST data.  

Method R0(Ω) RP(Ω) CP(F) vOCV(1)V vOCV(666)V vOCV(1331)V vOCV(3326)V vOCV(4656)V vOCV(6650)V 

CSO  0.0689  0.0243  1184.69  3.8759  3.7519  3.7482  3.6974  3.5780  3.4814 
BICCA  0.0637  0.0224  1231.28  3.8510  3.6694  3.6244  3.5438  3.4807  3.4559 
CHPSO-VIR  0.0712  0.0247  1155.40  3.7249  3.6410  3.5256  3.4865  3.4114  3.4017 
MA-SW-Chains  0.0732  0.0232  1226.15  3.8809  3.7316  3.6439  3.5175  3.4955  3.4486 
TSPDG  0.0623  0.0244  1063.67  3.8151  3.7643  3.6524  3.6125  3.5634  3.4797 
RBLSO  0.0587  0.0242  1207.05  3.8267  3.8253  3.6804  3.5983  3.5511  3.4317 
SEE  0.0679  0.0259  1239.29  3.7751  3.6364  3.6108  3.5501  3.5114  3.4684 
CCDE  0.0705  0.0269  1201.41  3.6889  3.6848  3.6680  3.5825  3.5059  3.4563  

Fig. 7. Convergence curves of compared algorithms on DST dataset.  
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comprehensive results of all involved algorithms over 31 independent 
runs are reported in Table 6. Min denotes the minimum fitness value. 
Med represents the median value over 31 runs. Max denotes the 
maximum fitness value. Mean and std are the average and standard 
deviation of the 31 fitness values, respectively. The minimum values in 
each column are shown in bold. To show the significant difference be-
tween CCDE and the corresponding compared algorithm, we also con-
ducted Wilcoxon rank sum test at a 0.05 significance level. Sign “+” 
indicates CCDE is significantly better than the peer competitor. Sign “-” 
means CCDE is significantly worse than the peer competitor. Sign “≈” 
denotes that the two algorithms perform similarly. 

From Table 6 we can see, the proposed CCDE outperformed other 
competitors in general. In each column, CCDE obtained the minimum 
value among the involved algorithms. From the results of Wilcoxon 
tests, SEE obtained similar results compared with CCDE. Whereas, the 
average fitness value of CCDE is better than SEE. This is partially 
because that the number of independent runs is relatively small. Further, 
the average error obtained by CCDE is 3.48E + 02. Considering kmax in 
DST dataset is up to 6650, the average error between measured and 
estimated terminal voltages on each sampling point is about 0.05 V. It is 
acceptable for the proposed methodology to meet such an accuracy with 
a very big dimension (D = 6653). The overall results in Table 6 
demonstrated that the proposed m-decomposition method and optimizer 
are effective for identifying parameters of battery. Besides, the optimal 
solutions optimized by all the algorithms are shown in Table 7. 

Table 7 reports different optimal solutions solved by the compared 
algorithms. The distribution ranges of R0, RP and CP are roughly the 
same. Whereas, for vOCV(k), the solutions varies obviously. This is 
because slight difference of the three parameters (R0, RP and CP) will 
generate relatively significant variances on vOCV. In general, the pa-
rameters of the best solutions found by the algorithms are within 
reasonable ranges. To show the convergence performances, the 
convergence curves of the involved methods with median fitness values 
were plotted as shown in Fig. 7. 

In Fig. 7(a), convergence curves with median fitness values over 31 
independent runs were plotted. MAX_FES = MAX_FESsub*m*2 =

4000*665*2 = 5.32E + 06. This setting means that there are 665 cycles/ 
sub-generations which constitute a main loop, and the main loop is 
executed twice. It is worth mentioning that, the convergence curves in 
Fig. 7(a) are different from other convergence curves on general opti-
mization problems. Usually, convergence curves will not fluctuate, 
because the global best fitness value recorded during evolving never 
deteriorates for a minimum optimization problem. Whereas, for pa-
rameters identification of battery in this paper, the global best fitness 
value may be bigger than the value in the last generation due to the 

updating mechanism of x* as shown in line 25 in Algorithm 3. We found 
that all the compared algorithms showed their good exploration capa-
bilities. Nevertheless, the proposed CCDE performed better than other 
methods on convergence. In the later stage, all the algorithms met 
stagnation. In Fig. 7(b), we plotted two convergence curves of CCDE and 
L-SHADE in one cycle which is a sub-generation. Within a cycle, the 
maximum FES is MAX_FESsub which is set to 4000 in this paper. 
Considering NP is set to 20, the maximum number of generations in a 
cycle is 200. In our experiments, all the compared CC algorithm all chose 
L-SHADE as the optimizer, so we compared CCDE with L-SHADE on 
convergence performance. From Fig. 7(b) we can see, the proposed 
CCDE could continuously improve the fitness value during a cycle, but L- 
SHADE met a stagnation in the later stage. This demonstrated that the 
proposed mutation strategy and parametric adaption are effective for 
identifying parameters of battery. Furthermore, the fitness value found 
by CCDE after a cycle is about 0.02 V. Considering in each sub- 
population Dsub is set to 13, which is consisted of R0, RP, CP and 10 
vOCV points, the average error of vterm and v̂term over the 10 sampling 
points is about 0.002 V. Such an accuracy is quite acceptable for an 
optimizer. Besides, it was also demonstrated that the parametric settings 
of NP and MAX_FESsub are suitable for solving this problem. In Fig. 7(c), 
we plotted the convergence curves which denote the average fitness 
values over all the independent runs. From this figure we can see, the 
averaged convergence curves look similar to the convergence curves 
with the median fitness values, but the averaged convergence curves 
fluctuated more violently. Also, this comparison on averaged conver-
gence curves demonstrated that the proposed methodology could find 
better solutions on average. In summary, the proposed CCDE out-
performed other methods on convergence. 

Further, comparisons of the involved algorithms on time cost are 
shown in Fig. 8. We recorded CPU time cost of each algorithm on 
randomly selected 11 out of 31 independent runs for showing compar-
isons clearly. From the bar chart, significant differences among the al-
gorithms may not exist. For most runs, the average time cost is about 
3500 s. That means the performance of CCDE on time complexity 
seemed similar to other state-of-the-art CC algorithms. Note that, the 
total consuming time of different algorithms vary in different simulation 
platforms, but it does not affect the comparisons among different 
algorithms. 

4.3.2. Experimental results on FUDS data 
In the section, FUDS data for 50% SOC level was used to test per-

formance of the proposed method. In initial part of FUDS test, the bat-
tery was charged fully with 1A to 100% SOC, then the cell rested for 
about 7200 s. After that, the battery was discharged with 1A to 50% 

Fig. 8. CPU time of the algorithms over partial independent runs (11 out of 31) on DST dataset.  
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SOC, then the battery rested for about 7100 s again. After initialization, 
current began to fluctuate from 24086 s to 31148 s. Excluding the data 
points whose voltage are below 3 V, there are 6946 data points during 
the dynamic test procedure. That is to say, kmax is 6946. Compared with 
DST data, kmax in FUDS data is slightly bigger. In this part, m was set to 
694 to build up a relatively small sub-population for convenience. It is 
noted that, by using this FUDS dataset, Dsub in each sup-population is not 
always the same, because kmax is not exactly divided by m with no 
reminder. For most sub-populations, Dsub is 13. For a few sub- 
populations, Dsub is 14. Nevertheless, there is no influences on the per-
formances of m-decomposition and CCDE with Dsub set to 13 or 14. Thus, 
NP was still set to 20 in this experiment. MAX_FESsub was set to 200*NP 
= 4000. MAX_FES = MAX_FESsub*m*2 = 4000*694*2 = 5.55E + 06. 
Also, each algorithm was run over 31 times on FUDS dataset. The 
comprehensive results are shown in Table 8. The minimum values in 
each column are shown in bold. Wilcoxon rank sum test at a 0.05 sig-
nificance level was also conducted between CCDE and every peer 
algorithm. 

From Table 8 we can see, CCDE outperformed other competitors on 
this FUDS dataset in general. According to the reported fitness values, 
CCDE was the best algorithm on four statistical indicators, such as me-
dian, maximum, average and standard deviation value over all the runs. 
SEE obtained the minimum fitness value, but its average performance 
was not stable. It may be caused by a good initial population. From the 
non-parametric test results, CCDE was significantly better than all the 
other peer algorithms. Compared with results on DST dataset, reported 
results of all these compared algorithms deteriorated to some extent, 
since FUDS dataset is more complicated than DST dataset. Moreover, the 
optimal solutions optimized by all the algorithms are shown in Table 9. 

From Table 9 we can see, there was no significant differences among 
most of the optimal vOCV solutions. However, the three parameters (R0, 
RP and CP) solved by different algorithms varied quite dramatically, 
compared with the reported results shown in Table 7. It is meant that, 
using FUDS dataset, there may be multiple feasible parameters which all 
could perform dynamic behaviors of battery well. This phenomenon was 
rarely reported by all other previous published investigations. Generally 
speaking, when researchers estimate SOC by using Kalman filter 
methods or other similar methods, the optimal parameters of battery are 
already known and unique by default. Multiple acceptable parameters of 
battery may make those conclusions obtained by such methods not 
reliable. The authors believed that it is an interesting topic for further 

investigations in the future. To show the convergence performances, the 
convergence curves of the involved methods with median fitness values 
were plotted as shown in Fig. 9.. 

In Fig. 9(a), all the methods showed similar convergence but with 
much more fluctuation, compared with Fig. 7(a). Again, this is because 
FUDS data is more complicated than DST data. In FUDS test, discharging 
and charging current in dynamic procedure change more dramatically 
with no regularity. The difference between DST and FUDS could be seen 
clearly by comparing the profiles of iL and vterm in Fig. 7 (a) and (b). The 
authors would like to explain the fluctuation of the convergence curves 
again. That is, for parameters identification of battery in this paper, the 
global best fitness value may be bigger than the value in the last gen-
eration due to the updating mechanism of x* as shown in line 25 in 
Algorithm 3. After each cycle/sub-generation, some variables in x* will 
be replaced by the best solution in each Xsub, resulting in possibly 
deteriorated fitness value of x* with full length. Roughly speaking, CCDE 
still performed best on convergence with median fitness value over 31 
runs. To make this observation more clear, we re-plotted Fig. 9(a) by 
eliminating the global best fitness values which are bigger than the 
current global best fitness value, as shown in Fig. 9(b). In Fig. 9(b), all 
the methods showed continuously exploring capability in the former 
evolving stage, but they all failed to improve their global fitness values 
in the later stage. This means that they may be trapped by local optima. 
In Fig. 9(c), we plotted the convergence curves which denote the 
average fitness values over all the independent runs. From this figure we 
can see, the averaged convergence curves look similar to the conver-
gence curves with the median fitness values, but the averaged conver-
gence curves fluctuated more violently. Also, this comparison on 
averaged convergence curves demonstrated that the proposed method-
ology could find better solutions on average. Despite all this, among the 
comparators, CCDE still showed the best performance on convergence. 
Further, comparisons of the involved algorithms on time cost are shown 
in Fig. 10. 

From Fig. 10 we can see, time cost of the compared algorithms 
behaved with slightly more fluctuation compared with Fig. 8. Besides, 
the average time cost on FUDS data is more than the time cost of DST 
data. This is another evidence to show that FUDS dataset is more 
complicated than DST dataset. Generally speaking, it seems no signifi-
cant differences on time complexity among the involved algorithms. 

Table 8 
Statistical results of fitness values and hypothesis tests on FUDS data.  

Method Min Med Max Mean Std Wilcoxon-test p-value 

CSO 9.81E + 01 1.69E + 03 5.53E + 03 1.43E + 03 1.38E + 03 + 7.47E-03 
BICCA 1.39E + 02 1.94E + 03 5.37E + 03 1.31E + 03 1.71E + 03 + 4.46E-03 
CHPSO-VIR 1.01E + 02 1.57E + 03 3.58E + 03 1.33E + 03 1.55E + 03 + 1.49E-02 
MA-SW-Chains 2.58E + 02 1.90E + 03 4.67E + 03 1.60E + 03 1.37E + 03 + 8.13E-03 
TSPDG 1.24E + 02 1.49E + 03 3.50E + 03 1.49E + 03 1.34E + 03 + 2.43E-02 
RBLSO 1.94E + 02 1.49E + 03 4.30E + 03 1.44E + 03 1.47E + 03 + 4.26E-03 
SEE 9.20E þ 01 1.55E + 03 3.50E + 03 1.44E + 03 1.35E + 03 + 2.02E-02 
CCDE 9.47E + 01 8.82E þ 02 2.20E þ 03 9.36E þ 02 9.58E þ 02 – –  

Table 9 
Best partial optimal solutions solved by the competitive algorithms on FUDS data.  

Method R0(Ω) RP(Ω) CP(F) vOCV(1)V vOCV(601)V vOCV(1201)V vOCV(3001)V vOCV(6001)V vOCV(6601)V 

CSO  0.0315  0.0504  1518.34  3.6425  3.6562  3.6209  3.6452  3.4563  3.4361 
BICCA  0.0754  0.0382  899.22  3.6844  3.6479  3.6379  3.6052  3.4546  3.4303 
CHPSO-VIR  0.0511  0.0885  1174.42  3.6612  3.6733  3.6449  3.6733  3.4774  3.4496 
MA-SW-Chains  0.0367  0.0222  1923.34  3.6472  3.6448  3.6125  3.7097  3.4445  3.4265 
TSPDG  0.0800  0.0519  1594.956  3.6883  3.6573  3.7545  3.6210  3.4630  3.5368 
RBLSO  0.0640  0.0533  1666.57  3.6732  3.6584  3.8073  3.6303  3.4722  3.5375 
SEE  0.0130  0.0222  1219.49  3.6251  3.7034  3.6015  3.6888  3.4416  3.4957 
CCDE  0.0505  0.0569  888.41  3.6609  3.6552  3.6332  3.6429  3.4591  3.4667  
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4.4. Comparisons with classical DE algorithms 

In order to demonstrate effectiveness of the proposed CCDE further, 
we chose the following seven classic highly-cited DE algorithms for 
comparison. In this section, the compared algorithms are SaDE (Qin 
et al., 2009), JADE (Zhang & Sanderson, 2009), jDE (Brest et al., 2006), 
CoDE (Wang et al., 2011), EPSDE (Mallipeddi et al., 2011), MPEDE (Wu 
et al., 2016) and DEPSO (Wang, Li, & Yang, 2019). The parametric 
settings of these compared algorithms are shown in Table 10. In this 
part, the same CC framework of parameters identification is used for all 
the algorithms. In each cycle, every sub-population is optimized by these 
involved algorithms in Table 10. 

All the settings on simulation and parameters are the same as the 
settings in Section 4.4. For DST data, kmax = 6650, Dsub = 13, MAX_-
FESsub = 4000, NP = 20, MAX_FES = 5.32E + 06. For FUDS data, kmax =

6946, Dsub = 14, MAX_FESsub = 4000, NP = 20, MAX_FES = 5.55E + 06. 
The number of independent runs is set to 31. We also conducted 

Wilcoxon rank sum test at a 0.05 significance level. Sign “+” indicates 
CCDE is significantly better than the peer competitor. Sign “-” means 
CCDE is significantly worse than the peer competitor. Sign “≈” denotes 
that the two algorithms perform similarly. Experimental results on DST 
and FUDS data are shown in Table 11. 

From the statistical results reported in Table 11, the proposed CCDE 
still showed promising capability for solving this problem, by being 
compared with some classic DE variants. First, under the proposed CC 
framework in this work, all the algorithm could identifying parameters 
and obtain competitive results. For example, MPEDE obtained the 
minimum value of Std on DST data, and DEPSO obtained the minimum 
value of Std on FUDS data. Whereas, CCDE still performed best on the 
averaged fitness value over all the runs. From the Wilcoxon test results, 
CCDE performed significantly better than jDE, EPSDE, MPEDE and 
DEPSO on DST data, and CCDE tied with SaDE, JADE and CoDE. On 
FUDS data, CCDE only performed similarly to SaDE. The other algo-
rithms were beaten by the proposed method. Considering these 

Fig. 9. Convergence curves of compared algorithms on FUDS dataset.  
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compared algorithm are well designed for solving various optimization 
problems, we may conclude that the performance of the proposed CCDE 
is acceptable and satisfying. 

In general, we make a short discussion on the above experimental 
results. First, the proposed methodology which consists of m-decompo-
sition and the corresponding DE algorithm is able to solve the problem 
which is parameters identification of battery. Simulations on two dy-
namic test datasets demonstrated that the presented CCDE could find 
outstanding solutions with higher accuracy, compared with 7 other 
state-of-the-art CC methods. Second, it is feasible to transform param-
eters identification of battery into a LSOP, which could be solved by 
using CC methods. This methodology could be consistent with measured 
iL and vterm based on the ECM without introducing any pre-assumptions. 
Compared with LS methods, the presented methodology could be 
applied for parameters identification of battery with higher orders and 
more complex models with strong non-linearization. Third, the param-
eters of battery need further investigations. As shown in the experi-
mental results, with ECM of battery, there may be multiple feasible 
parameters which all could perform dynamic behaviors of battery well. 

It is necessary to research how to choose a final parameter setting from 
the candidate pool. 

5. Conclusions 

This paper proposed a new cooperative co-evolution algorithm 
named as CCDE for identifying parameters of LIB. Under this framework, 
this problem was innovatively transformed into a LSOP to realize global 
optimization for the parameters of battery. The first-order RC model was 
solved numerically by using improved Euler’s method. Based on the 
framework in this work, R0, RP, CP and partial vOCV(k) could be found 
simultaneously in each sub-population by using CCDE algorithm. 
Compared with several newly published state-of-the-art CC methods, 
comprehensive experimental results demonstrated that, the proposed 
methodology is feasible and effective for identifying parameters of 
battery. That means, given a set of measured iL and vterm, the most fitted 
parameters of LIB could be optimized directly with any non-linearity. It 
also demonstrated that the proposed methodology could identify pa-
rameters of complex ECMs with strong non-linearity. Besides, the au-
thors have found an interesting phenomenon which revealed that there 
may be multiple optimal parameters for battery. In the future, further 
investigations should be conducted on how to select a final parametric 
setting and how to define the limits of the variables. Meanwhile, it is also 
important to apply this methodology for estimating SOC or identifying 
parameters in electrochemical model in future works. 
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Fig. 10. CPU time of the algorithms over partial independent runs (11 out of 31) on FUDS dataset.  

Table 10 
Parameter configurations of compared algorithms.  

Method Parameters settings 

SaDE F = Norm(0.5, 0.3), Cr = Norm(Crmk, 0.1), LP = 50 
JADE c = 0.1, p = 0.05, μF = 0.5, μCR = 0.5 
jDE Fl = 0.1, Fu = 0.9, τ1 = τ2 = 0.1 
CoDE Three trial vector generation strategies and three control parameter 

settings 
EPSDE Cr range [0.1, 0.9] and F range [0.4, 0.9] 
MPEDE λ1 = 0.2, ng = 20 
DEPSO SEP = 30, γ = 0.001, Fl = 0.1, Fu = 0.8, Crl = 0.3, Cru = 1.0 
CCDE Fl = 0.1, Fu = 0.9, Cru = 0.5, τ1 = τ2 = 0.1  

Table 11 
Mean and variance of fitness values of CCDE and 7 classic DE variants.  

Algorithms DST data FUDS data 

Mean Std W-test p-value Mean Std W-test p-value 

SaDE 5.38E + 02 4.26E + 02 ≈ 4.22E-01 1.36E + 03 1.22E + 03 ≈ 1.18E-01 
JADE 4.37E + 02 3.74E + 02 ≈ 2.31E-01 1.29E + 03 1.14E + 03 + 1.87E-02 
jDE 5.80E + 02 4.28E + 02 + 2.91E-02 1.17E + 03 9.99E + 02 + 3.02E-02 
CoDE 4.71E + 02 3.94E + 02 ≈ 3.31E-01 1.33E + 03 1.04E + 03 + 2.97E-03 
EPSDE 5.49E + 02 4.22E + 02 + 2.84E-03 1.31E + 03 1.19E + 03 + 1.32E-02 
MPEDE 5.74E + 02 3.10E þ 02 + 5.34E-04 1.37E + 03 1.11E + 03 + 7.66E-04 
DEPSO 4.98E + 02 3.31E + 02 + 1.55E-02 1.69E + 03 9.59E þ 02 + 5.33E-05 
CCDE 3.59E þ 02 3.39E + 02 – – 9.67E þ 02 1.00E + 03 – –  
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