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A B S T R A C T   

Pressure sensors are widely used in various industrial automatic-control environments. With the rapid devel-
opment of the Internet of Things (IoT) technology, the requirements for environmental adaptability and reli-
ability of pressure sensors in IoT applications are also increasing; moreover, pressure sensors are challenged by 
the energy supply problem. In this regard, a triboelectric pressure sensor has the remarkable characteristic of 
being self-powered. It is highly sensitive, stable, and environmentally adaptable, all of whose features are of 
considerable significance for fully adapting to the development needs of IoT. The environmental adaptability and 
performance stability of triboelectric pressure sensors in information sensing systems are gradually increasing, 
which also puts forward higher requirements for material selection and processing technology. In this study, the 
basic working principle, structural design, electrode material, processing technology, sensing characteristics, and 
various application scenarios of triboelectric pressure sensors are systematically and comprehensively sum-
marised. Furthermore, following a novel approach, triboelectric pressure sensors are divided into four types 
according to the electrode materials: conductor, semiconductor, hybrid, and hydrogel electrodes. Finally, the 
existing challenges and future application prospects are discussed in depth. The study findings can contribute to 
promoting further developments in the field.   

1. Introduction 

The rapid development of the Internet of Things (IoT) in recent years 
has made the realisation of the Internet of Everything (IoE) through 
mobile networks and intelligent terminal devices gradually feasible 
[1–6]. The vision of the IoE is reflected in the wide application of the IoT 
in electronic skin (e-skin)[7–14], sports health monitoring [15–22], 
human–computer interaction systems [23–30], and other fields. How-
ever, a sizable number of sensor systems are required to realise the IoE. 
A significant amount of tactile and pressure sensing [31–36] information 
must be conveyed through pressure sensors as a medium when creating 
a connection between the mobile Internet and the physical terminal 
information interaction. Sensors need to be stretchable, flexible, and 
biocompatible in e-skin applications. In sports health-monitoring ap-
plications, pressure sensors must have the capacity to be miniaturised, 
lightweight and intelligent. Sensitivity and stability are required in 
human–computer interaction applications. Owing to these myriad re-
quirements, research has recently focused on pressure sensors with 
improved adaptability [37–40], higher performance [41–45], and more 
precise manufacturing processes [46–51]. 

Piezoresistive, capacitive, piezoelectric, and other types of pressure 

sensors have become widely used in recent years. Piezoresistive sensors 
[52–56] refer to sensors based on the piezoresistive effect of a 
single-crystal silicon material. The resistivity of monocrystalline silicon 
materials varies with the applied force, and the measurement circuit can 
produce an electrical signal output that is proportional to the applied 
force. Capacitive sensors [57–61] generally use a round metal film or 
metal-plated film as the electrode of the capacitor. When the film per-
ceives pressure and deforms, the capacitance formed between the film 
and the fixed electrode changes, and the measuring circuit can output an 
electrical signal that has a certain relationship with the voltage. These 
two types of sensors require an external power supply while working, 
which considerably limits the applicability of piezoresistive and capac-
itive sensors in harsh working environments. Piezoelectric pressure 
sensors [62–69] convert the measured pressure into electrical signals via 
the piezoelectric effect. The quantity of charge produced by piezoelec-
tric elements constructed from piezoelectric materials under pressure 
and the applied force has a linear relationship. Although piezoelectric 
pressure sensors successfully resolve the problem of external power 
supply, they can only be used in common application environments, 
owing to the limitations of there being only a few types of piezoelectric 
materials [70–74]. Therefore, it is necessary to develop a new type of 
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pressure sensor with strong applicability, high sensitivity, and 
self-power supply [75–82], which can revolutionize the field of pressure 
sensors. 

In 2012, Professor Wang Zhonglin first proposed a triboelectric 
nanogenerator (TENG). The materials and structures of TENGs have 
been continuously optimised owing to several years of development, 
thereby endowing them with the advantages of large output, high effi-
ciency, and good stability [83–92]. In addition, flexible TENGs can 
adjust to different deformations during usage, including stretching, 
twisting, and bending [93–99]. Hence, self-powered pressure sensors 
based on the concept of triboelectric generators have been fabricated 
and used frequently in recent years[100–104]. Many structural opti-
misations and experimental investigations have been carried out to 
improve the working applicability and sensitivity of pressure sensors 
and to broaden the range of detection [105–109]. In terms of material 
selection, in addition to research on the modification of triboelectric 
materials, studies have also been conducted on electrode materials. This 
study focussed on different types of electrode materials, as illustrated in  
Fig. 1, and introduced recent advances in the selection of electrode 
materials for triboelectric pressure sensors. Common electrode materials 
include copper[110–118], silver [119–124], carbon [125–136], poly-
mer hybrid electrode materials [137–140], and flexible ion-gel electrode 
materials [141–146]. In terms of changing the physical structure, 
different contact mechanisms have been designed by constructing sur-
face micro–nanostructures [147–150]. In processing technology, 
various physical [151–155] and chemical [156–158] properties of the 
surface treatment process have been applied. 

In this study, we provide a comprehensive overview of triboelectric 

pressure sensors with different types of electrode materials. First, 
triboelectric pressure sensors were divided into four types based on the 
different electrode materials. Then, the features of each type of tribo-
electric pressure sensor were analysed in detail, including the structural 
design, working principle, sensing performance analysis, and applica-
tion scenario discussion. Finally, we discuss the problems and future 
developmental trends in triboelectric pressure sensors. This study will 
serve as a reference for selecting and processing electrode materials for 
triboelectric pressure sensors, which will help develop intelligent 
sensing systems in the future. 

2. Fundamental mechanism of triboelectric pressure sensors 

2.1. Theory of triboelectric nanogenerators 

To explain the working principle of TENGs, theoretical investigations 
such as analysing the Maxwell displacement current by combining the 
characteristics of various power generation effects, such as piezoelectric 
and triboelectric effects, have been performed. Wang’s group derived 
the expanded Maxwell’s equations for a mechano-driven slow-moving 
media system recently [159–162]. 

∇⋅D’ = ρf − ∇⋅Ps (1)  

∇⋅B = 0 (2)  

∇× (E − v × B) = −
∂B
∂t

(3) 

Fig. 1. Classification of triboelectric pressure sensors based on the electrode materials.  
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∇× [H + v × (D’+Ps) ] = Jf + ρf v+
∂Ps

∂t
+

∂D’
∂t

(4)  

where D’is the electric displacement field, ρf is the space charge density 
of free charges, Ps is a polarization term in the displacement vector, B is 
the magnetic field, E is electromagnetic field, v is the translation ve-
locity, H is the magnetizing field, Jf is the local free electric current 
density, which primarily expand the applications of TENG in various 
fields. 

In the case of TENGs, triboelectric charges are produced on surfaces 
simply due to a physical contact between two different materials. To 
account for the contribution made by the contact electrification induced 
electrostatic charges in the Maxwell’s equations, an additional term Ps is 
added in D’. Ps is mainly due to the existence of the surface charges that 
are independent of the presence of electric field. 

2.2. Theory of triboelectric pressure sensors 

There are four working modes for a TENG: vertical contact–separa-
tion, lateral sliding, single-electrode, and freestanding triboelectric- 
layer modes. Triboelectric pressure sensors mainly operate in the ver-
tical contact–separation mode, which is one of the four working prin-
ciples that constitute the TENG’s primary operating modes. This mode 
places two materials, which have distinct triboelectric characteristics, 
opposite to each other vertically. Two triboelectric layers come into 
contact with each other when subjected to external excitation. The 
surfaces of the two triboelectric layers generate electric charges with 
opposing characteristics owing to electrostatic induction, as shown in  
Fig. 2a. When the external excitation is withdrawn, the two triboelectric 
layers split, creating a potential drop between the two electrodes. As 
shown in Fig. 2b, this causes electrons to flow through the linked load. 
When the outer triboelectric layer is released to the limit position, the 
voltage between the two electrodes reaches the maximum. Fig. 2c shows 
the physical model of the triboelectric layers and the electrode layers in 
this state. The triboelectric layers close when an external excitation is 
applied again. As shown in Fig. 2d, electrons transfer during pressing 
and the voltage between the electrodes disappears gradually. This 
further enables electrons to return to achieve electrical equilibrium. This 
mode requires efficient cycle switching between the intimate contact 

state and the completely separated state for the proper functioning of the 
friction power-production process [100]. 

According to the equivalent physical model illustrated in Fig. 2c, the 
electric field strength, obtained from the Gauss theorem, in each region 
is given by. 

Inside the air gap 

E0 =
σ0 −

Q
S

ε0
(5) 

Inside the dielectric layer 1 

E1 =
− Q

ε0ε1S
. (6) 

Inside the dielectric layer 2 

E2 =
− Q

ε0ε2S
. (7) 

Here, σ0 is the triboelectric charge density; ε0 is the permittivity in a 
vacuum; Q is the amount of transferred charge; and ε1 is the relative 
dielectric constant of the dielectric layer. 

The voltage between the two electrodes can be given by 

V = E⋅d(t) +E1⋅d1 +E2⋅d2. (8) 

Substituting Eqs. (5), (6) and (7) in Eq. (8) implies 

V = −
Q

ε0⋅S
(
d1

ε1
+ d(t) +

d2

ε2
)+

σ0d(t)

ε0
(9)  

where d1, d2, and d(t) represent the thickness of dielectric layer 1, 
dielectric layer 2, and the air gap distance, respectively. In the open- 
circuit condition, there is no charge transfer, which means that Q is 
zero. In this case, the open-circuit voltage VOC is given by 

VOC =
σ0d(t)

ε0
. (10) 

According to Eq. (10), in theory, the dielectric constant of the ma-
terial is a constant value in determining the TENG pressure sensor of the 
material. Therefore, the microstructure of the dielectric layer can be 
regarded as a gap layer, and theoretically, the change in voltage has a 
linear relationship with the change in the gap. This has been confirmed 

Fig. 2. Working mechanism of the vertical contact–separation mode of TENG. (a) Contact electrification under pressure. (b) Electrons transfer during releasing. (c) 
Equivalent physical model. (d) Electrons transfer during pressing. 
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by previous research [163–165]. 

3. Triboelectric pressure sensor 

Most materials in nature have different electronegativities. Various 
materials can be used as triboelectric layers of TENG. Different contact 
materials couple to produce different triboelectric effects. Material se-
lection for the TENG contact layer, material processing technology, and 
other elements have been extensively studied. And the studies have re-
ported positive experimental findings, proving TENG appropriate for 
various scenarios and showing a stronger triboelectric effect. Self- 
powered sensors using a variety of electrode materials exhibit 
outstanding sensing capabilities when used in various scenarios. For 
instance, sensors have been fabricated from ion-gel electrode materials, 
metal electrode materials, semiconductor electrode materials, and 
hybrid electrode materials made of metal, semiconductor, and polymer 
materials. Consequently, there are numerous triboelectric material va-
rieties to choose from when making material decisions. 

3.1. Triboelectric pressure sensor based on metal conductor electrodes 

Metal conductor electrode materials are the most widely used elec-
trode materials in current research. Common metal conductor materials 
are characterised by low cost, excellent conductivity, and good 

mechanical strength. In addition, individual materials have unique 
characteristics. For example, aluminum and copper have good stability 
and durability, making them suitable TENG electrode materials in 
humid environments. Silver and gold have excellent ductility, which can 
be used in e-skin applications. The application of silver nanowires 
(AgNWs) is the most representative processing technology, which fully 
demonstrates their excellent ductility. 

3.1.1. Two-dimensional planar structure 
A two-dimensional planar-structure electrode is the most common 

structure of the electrode materials used in triboelectric pressure sen-
sors. Wang et al. [47] developed a discrete, self-powered, integrated 
triboelectric sensor array (ITSA). The main structural features of a 
single-sensor unit are shown in Fig. 3a. Silicone substrates were used for 
the top and bottom layers. The top and bottom electrode layers were 
made of metal-deposited fabrics, which not only maintain the excellent 
conductivity of the metal but also make the electrode layer highly 
flexible with the use of metal deposition technology. The electrode 
contacts the triboelectric layer significantly under different pressure 
excitations, such that the sensing performance of the device remains 
stable. Fig. 3b shows the voltage feedback of each sensor unit in the 
structure of the ITSA under an ‘N′ type external pressure excitation. It 
can be seen in the figure that there are obvious voltage signal differences 
between the pressurised and non-pressurised units. The shape of the 

Fig. 3. Two-dimensional planar structure electrode. (a) Structure of a single sensor unit of a triboelectric sensor array (TSA). (b) Output voltage curves of the TSA 
when a model of shape ‘N′ is pressed on the top surface. (c) Tests with different numbers of points. (d) Structure of the triboelectric sensor matrices (TESMs). (e) 
Output voltage as a function of pressure. (f) Schematic of the pressure mapping process. (g) Structural design of the all-nanofiber triboelectric e-skin. (h) Normalized 
output voltage response to a wide range of pressure. (i) Detection of the finger bending angles by attaching an e-skin to the knuckle. 
(a-c) Reproduced with permission [47] (Copyright 2020, Wiley-VCH). (d-f) Reproduced with permission [84] (Copyright 2016, Wiley-VCH). (g-i) Reproduced with 
permission [95] (Copyright 2020, Amer Assoc Advancement Science). 
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mapped ‘N′ can also be observed. The ITSA was combined with a 
microprogrammed control unit (MCU-MSP430) to realise the visual-
isation functions of pressure monitoring and position recognition. 
Fig. 3c shows that the visualisation function exhibits excellent perfor-
mance in multi-point simultaneous monitoring. These results verify the 
practicability of the ITSA in pressure mapping and position recognition. 
Furthermore, the integration of the ITSA and wireless sensor system can 
realise the remote monitoring function of the contact objects. 

To improve the manufacturing accuracy of the electrode arrays, 
Wang et al. [84] applied a deposition process to fabricate patterned 
electrode arrays. They proposed flexible triboelectric sensor matrices 
(TESMs) that realise real-time tactile pressure sensing. The main struc-
ture is shown in Fig. 3d. The top flexible substrate of a single sensing unit 
was made of a polyethylene glycol terephthalate (PET) film. The bottom 
electrode was enclosed in a layer of PET film and ethylene-vinyl acetate 
(EVA) copolymer. The top electrified triboelectric layer was composed 
of a layer of polydimethylsiloxane (PDMS) spin coating. Fig. 3d-(i) 
shows the surface microstructure of PDMS. The TESM electrode was 
fabricated by the magnetic sputtering process. First, both sides of the top 
PET film were covered with predesigned masks with different patterns, 
and then the array through-hole was created by laser cutting. An Ag 
layer was then deposited on both sides of the substrate using a magnetic 
sputtering process. The two deposition layers were connected through a 
laser-cut through-hole. Fig. 3d-(ii) shows the device used in this study. 
Fig. 3e shows the experimental results of the pressure sensitivity of the 
device. In the pressure range below 80 kPa, the change rate of ΔV/ΔP 
presents a linear feature, and the pressure sensitivity was 0.06 kPa− 1, 
which is a good pressure sensitivity value. Fig. 3f shows the results of the 
FEM simulation of single-point and multi-point touch perceptions using 

Comsol. The difference in the potential distribution between the contact 
point and non-contact electricity can be observed intuitively. It provides 
a theoretical basis for the feasibility of TEMS. In the following research, 
TEMS was integrated with a data processing unit, and with the help of 
the signal filter program, an excellent path-awareness recognition 
function was realised. Furthermore, Lee, Zhang, and Wang et al. 
[166–168] used array-structured metal conductor electrodes to fabricate 
triboelectric pressure sensor arrays, which exhibited excellent sensi-
tivity and linearity in the low-pressure range (<10 kPa). 

By restructuring the material with a microstructure, Xiao et al.[95] 
designed a flexible and stretchable e-skin based on a TENG, and its 
structure is shown in Fig. 3g. It is a sandwich structure composed of 
poly-(lactic co-glycolic acid) (PLGA), AgNWs, and polyvinyl alcohol 
(PVA). PLGA was used as the triboelectric layer, AgNWs as the flexible 
electrode layer, and hydrophilic PVA fabric as the skin contact layer. 
AgNWs have excellent ductility, electrical conductivity, and a high 
specific surface area, which can be used to prepare electrodes for flexible 
sensors with high performance and sensitivity. AgNWs have been used 
in many applications in the development of flexible sensors. Fig. 3h 
shows the research results for the pressure sensitivity of the e-skin. In the 
pressure range below 40 kPa, the change rate of ΔV/ΔP exhibited a 
linear relationship, and the pressure sensitivity was 0.011kPa− 1. In the 
experimental research on e-skin for monitoring human movement 
behaviour, the bending test of fingers (as shown in Fig. 3i) and limbs, 
and pulse test of the wrist and carotid artery were carried out; the e-skin 
showed excellent working stability. Bu and Gao et al.[169,170] also 
used AgNWs as electrode materials to make triboelectric pressure sen-
sors, which had excellent sensitivity of 0.1 nA/kPa and 2.6 mV/Pa in a 
low-pressure range. 

Fig. 4. Woven fabric structure electrode. (a) Structure of a single-wire triboelectric nanogenerator (TENG). (b) Relationship between voltage difference and applied 
force. (c) Demonstration of triboelectric threads as a wireless wearable keyboard. (d) Schematics of Cu-PAN yarns and parylene-CuPAN yarns. (e) Schematics (top) 
and photographs (bottom) of textile pressure sensors fabricated by knitting. (f) Pressure response from textile pressure sensors with knitted structures. (g) Voltage 
signals recorded by different sensors and the corresponding pressure mappings when holding a dumbbell. (h) Schematic showing the preparation process of a TENG. 
(i) Schematic of the arrays sensing fabric. (j) VOC of TENG as a bending sensor when a finger bends at different angles.(k) The VOC of TENG as a bending sensor when 
fingers bend at different angles. 
(a-c) Reproduced with permission [171] (Copyright 2017, Wiley-VCH). (d-g) Reproduced with permission [172] (Copyright 2020, Elsevier). (h-k) Reproduced with 
permission [173] (Copyright 2021, Elsevier). 
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3.1.2. Woven fabric structure 
In addition to metal deposition processes and nanotechnology, metal 

wire coating, winding, and weaving processes are used to prepare 
flexible electrodes. Lai et al.[171] proposed a single-wire TENG, as 
shown in Fig. 4a. It works on the principle of a single-electrode TENG, 
where the electrode material is composed of multiple bundles of stain-
less steel wires and a soft silica gel material is used as the triboelectric 
material. These materials can be woven into fabric-type TENGs for static 
and dynamic force sensing because of their high flexibility. Fig. 4b 
shows the voltage changes generated by the sensors under various 
external pressure stimuli. When the applied external force reached 6 N, 
the voltage change rate of the sensor gradually stabilised. The sensor 
exhibited excellent linear variation characteristics. Fig. 4c demonstrates 
that this linear TENG, as a sensing unit, combined with a signal receiver 
and microcontroller, can constitute a novel self-powered wearable 
keyboard. The flexible single-wire TENG introduced in this study had 
the characteristics of a simple structure, low cost, and high flexibility, 
and it provides a reference for the application of smart sensing gloves 
and wearable devices. 

Zhao et al.[172] proposed a textile-structured TENG for pressure 
sensing. As shown in Fig. 4d, this textile-structured pressure sensor used 
commercial PAN yarn as the substrate and a polymer-assisted metal 
delamination method (PAMD) to prepare the Cu-PAN yarn. In the PAMD 
fabrication process, PAN yarns were modified with a thin layer of 
poly-[(2-(methacryloyl oxy) ethyl) trimethylammonium chloride] 
(PMETAC), followed by loading of a catalytic palladium salt on the 
quaternary ammonium groups of PMETAC. After the chemical deposi-
tion of copper, the modified PAN yarn was coated with 300 nm copper 
to obtain a copper PAN yarn. This type of yarn has low resistance and 
excellent conductivity. Fig. 4e shows a schematic of the pressure sensor 
woven via knitting. Fig. 4f shows the voltage changes in the knitted 
textile pressure sensor at different pressures. Through linear fitting, 
although the sensitivity of the fabric pressure sensor was divided into 
three different sensing intervals, each interval showed a linear rela-
tionship of 0.071 V/kPa and 0.008 V/kPa. Fig. 4g shows a smart glove 
woven with a yarn. When wearing a glove to grab an object, the sensing 
unit on the glove generates different voltage signals. The corresponding 
sensing unit output-pressure distribution was obtained according to the 
voltage–pressure characteristic curve. 

Different programming structures also result in different voltage- 
output effects. He et al.[173] designed a flexible, stretchable, and 
wearable fabric-based TENG for the real-time monitoring and display of 
physiological signals. The structure of a single wire in the fabric is shown 
in Fig. 4h. This fabric used a spirally wound metal copper spring as the 
electrode and ZnS:Cu/PDMS coating material as the triboelectric layer. 
Fig. 4i shows the braided structure of this fabric-type TENG, which could 
be woven into a flexible fabric. As shown in Fig. 4j, when TENG with 
braided structure was used as the pressure sensor, it had linear sensi-
tivity of 1.02 V/N and 0.15 V/N in two pressure sensitive regions. In the 
two intervals, although the rate of change was different, the linear 
relationship between the output voltage signal and the change in the 
applied external force was maintained, thereby providing good stability 
for the sensing function. Fig. 4k shows that the TENG sensor was placed 
at the finger joint. The voltage signal of sensor also showed a stable 
difference at different bending angles of the finger joint. The flexible 
wearable self-powered sensor reported in this paper has broad prospects 
for applications in the field of human motion monitoring. Pyo, Guan, 
and Bai et al.[174–176] also adopted a fabric-type TENG as a flexible 
pressure sensor, which also showed a stable linear sensitivity value. 

Metal materials are the most widely used electrode materials because 
of their excellent conductivity. The unique characteristics of different 
metals, such as ductility and durability, are highlighted when they adapt 
to application environments. Copper has the characteristics of soft 
texture and ductility, and can be prepared into soft copper wire. The 
copper wire can be made into flexible electrode by multiple knitting 
methods, which provides excellent electrode material for e-skin 

manufacturing. Silver also has great ductility. Silver can be prepared 
into micron and nanometer electrode materials by micro-treatment 
process. AgNWs is one of the most representative materials. The 
outstanding performance of metal materials indicates the main direction 
of further research on the processing and application of metal materials 
in the future. 

3.2. Triboelectric pressure sensor based on a semiconductor electrode 
material 

Among the elements in nature, carbon is an important and widely 
used non-metallic element. The variability of the covalent bonds be-
tween the carbon atoms enables carbon to form a wide variety of allo-
tropes. These can usually be classified according to the dimensions; the 
representative structures under different dimensions are listed in  
Table 1. Different carbon allotropes exhibit different properties. Among 
them, carbon nanotubes (CNT), graphene, and graphene oxide have 
considerable electrical conductivity. Based on this characteristic, it can 
be used as a conductor material for TENG with excellent performance 
[177–179]. 

3.2.1. Carbon nanotube (CNT) electrode material 
To improve sensor flexibility and biocompatibility, Fang et al.[180] 

proposed a textile triboelectric sensor for cardiovascular health moni-
toring. Fig. 5a depicts its basic composition. The PMDS layer acted as an 
attached side encapsulation layer and the outside textile acted as a 
waterproof protection layer. In the internal structure, the aluminium 
film and CNT layers served as electrode layers, and the FEP layer served 
as a triboelectric layer. The CNT conductive network is a monodispersed 
CNTs deposited on hierarchically structured cotton using a scalable 
spray-coating method, as shown in Fig. 5b. Therefore, the CNT layer can 
combine the flexibility and ductility of the yarn-knitted structure with a 
high electrical conductivity. Fig. 5c demonstrates that this textile 
triboelectric sensor has a sensitivity of 0.21 µA/kPa and good linearity in 
the low-pressure operating range 10–40 Pa. Fig. 5d shows the subse-
quent processing of the sensor signals. The data connection between the 
Bluetooth module and the designed monitoring APP can be established 
to monitor cardiovascular characteristics in real time on the mobile 
terminal of the mobile APP. This study represents a significant milestone 
for triboelectric sensors in IoT applications. 

In the triboelectric sensors used in human–computer interaction 
equipment, the use of CNT makes the performance of the sensor more 
stable. The flexible, self-powered keyboard was created by Abdelsalam 
Ahmed et al.[181] using urethane, silicone rubber, and CNT electrodes. 
Fig. 5e shows a schematic of a self-powered-keyboard sensing unit, 
where a layer of air gap and two layers of CNT electrodes on copper 
tapes constituted the middle portion. Fig. 5f shows the experimental 
results of the pressure sensing; it can be concluded that the pressure 
sensitivity of the pressure sensor was divided into two regions of linear 
variation. In the low- and high-voltage regions, linear variation char-
acteristics of 1.52 mV/Pa and 1.073 mV/Pa were achieved, respectively. 
Fig. 5g shows that the self-powered keyboard can input information to 
the computer with the help of an infrared transmitter and receiver 
connected to the microcontroller. This self-powered flexible keyboard 
has broad application prospects in wearable electronic devices and 

Table 1 
Representative structures under different dimensions.  

0D 1D 2D 3D 

Fullerene Single-walled carbon 
nanotubes 

Graphene Diamond 

Carbon dots Multi-walled carbon 
nanotubes 

Graphene oxide Pillared 
graphene 

Graphene 
dots 

Carbon nanohorns Multi-layered 
graphitic sheets 

Graphite  
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displays, e-skins, and robotic sensing. 
Fibres made by mixing CNT with other substances exhibit good 

conductivity. Chen et al.[182] developed a single-electrode pattern--
based TENG sensor using 3D printing technology to monitor limb 
movements. A schematic of the fabrication of the (3DP-TENG) is shown 
in Fig. 5h. The main production process involves adding CNTs and salt 
particles to the PGS to prepare the printing ink. Through the thermal 
curing process, the extruded paste composite ink could be cured quickly 
to form a 3D structure. The experimental results presented in Fig. 5i 
show that the output voltage changes linearly with the compressive 
strain. This linear characteristic can be used for real-time monitoring 
and evaluation of the human motion states. Fig. 5j illustrates the 
3DP-TENG used for sensing the knuckle-bending angle. Fig. 5k shows 
the various voltage signals produced by the sensor at various angles 
corresponding to knuckle-bending angles of 90◦ and 130◦. This TENG 
with a 3D printed structure can be applied to wearable devices, intelli-
gent robots, and the IoT in the future. Yu and Yang et al.[125,183] also 
adopted triboelectric pressure sensors with CNT as the electrode mate-
rial and achieved excellent experimental results. Additionally, both 
triboelectric pressure sensors exhibited excellent extensibility and 
hydrophobicity. 

3.2.2. Graphene electrode material 
Graphene is widely used in electrical devices and structures. In a 

graphene monolayer, each carbon atom is covalently bonded to nearby 
atoms to form a honeycomb lattice. This robust structure endows gra-
phene with flexible mechanical properties and impermeability. 
Furthermore, the physical properties of graphene include its excellent 

thermal and electrical conductivity. Graphene plays a unique role as a 
practical, conductive, scalable, and cost-effective material in TENG 
electrodes. 

Lee et al.[184] designed a stretchable TENG (S-TENG) with an ul-
trathin mesh structure that can be attached to the body parts as a 
wearable device. Fig. 6a shows the main structure of the S-TENG, which 
comprised of stacks of PET, bilayer graphene, and polydimethylsiloxane 
(PDMS) fabricated using a coating process. PDMS was used as the 
triboelectric layer, and two layers of graphene were used as the elec-
trodes. Fig. 6b shows the variation in the voltage output of the S-TENG at 
different pressures. It can be seen from the figure that in the pressure 
range 10.6–101.7 kPa, the voltage–pressure change is a linear trend, and 
its sensitivity is 0.274 V/kPa. In the trajectory perception experiment, 
after both the filter procedure and the sensor traversed the ‘2′ shape 
track, the voltage feedback of each sensing unit exhibited a ‘2′ shape, as 
shown in Fig. 6c, where the S-TENG, as a wearable sensing device, shows 
potential as a self-powered wearable communication system device after 
matching it with a switching multimeter, filter, and other equipments 
(Fig. 6d). The results of this study can facilitate the realisation of 
communication and interaction functions in wearable electronic devices 
that directly send signals and commands. 

The performance of a graphene sensor can be improved by changing 
the 3D structure of graphene. Chen et al. [128] developed a flexible 
TENG sensor using a crushed graphene (CG) layer. The fabrication 
process flow of CG is illustrated in Fig. 6e. First, planar graphene was 
transferred onto a stamp film. After etching, the planar graphene was 
transferred to a biaxially pre-trained tape. During the relaxation process, 
planar graphene that was transferred on the tape contracted along with 

Fig. 5. Carbon nanotube (CNT) electrode material. (a) Schematic of a textile triboelectric sensor. (b) Spray-coating monodispersed CNT solution onto cotton textile 
to form a conductive network (c) Sensitivity of textile triboelectric sensor. (d) Photograph of the harsh environment tolerant textile triboelectric sensor-enabled real- 
time pulse monitoring using a mobile phone. (e) Structural design of a flexible TENG keyboard. (f) Relationship and linear fitting between ΔV/V0 versus applied 
pressure. (g) Circuit diagram of the self-powered wireless sensing system enabled by keyboard typing. (h) Schematic of the fabrication of a 3D printing TENG (3DP- 
TENG) and a hierarchical porous structure. (i) Linear dependence of the peak output voltage on different compression strains. (j) 3DP-TENG applied to knuckle 
bending angle sensing. (k) Different output voltage profiles of the 3DP-TENG during cyclic finger bending at different angles. 
(a-d) Reproduced with permission [180] (Copyright 2021, Wiley-VCH). (e-g) Reproduced with permission [181] (Copyright 2017, Elsevier). (h-k) Reproduced with 
permission [182] (Copyright 2018, Wiley-VCH). 
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the tape and was crumpled. Fig. 6f shows the results of the study on the 
effect of different degrees of wrinkles on the output voltage. Its output 
voltage was an order of magnitude higher than that of the TENG 
composed of planar graphene layers in the control experiment. When 
CG-TENG was used as a sensor, different voltage signals were generated 
for different bending angles of the knuckles (Fig. 6g), thereby realising 
the human motion monitoring functions. This CG-TENG provides a new 
concept for future applications in wearable devices and embedded 
sensors. 

The application of graphene in human skin sensing has also shown 
excellent performance. Chu et al. [185]reported that an ultrathin TENG 
sensor could be attached to the human skin, and its main structure is 
shown in Fig. 6h, with a nanostructured and functionalized surface 
(NFS), called NFS-PDMS, as the contact triboelectric layer, a graphene 
layer as the electrode layer, and a PET film as the encapsulation layer. 
Fig. 6i shows that when used as a wearable device, it can generate 
different voltage signals when different numbers of fingers are pressed. 
According to this characteristic and with the help of signal processing 
and transmission equipment, the voltage signal can be converted into a 
Morse code to realise information exchange (Fig. 6j). This study 
extended the use of TENG sensing technology in areas such as human-
–machine interface interaction. Yang and Liu et al.[44,186] used gra-
phene as the sensor electrode material to fabricate a flexible triboelectric 
sensor and achieved excellent results. 

In addition to the aforementioned TENGs based on graphene 

electrodes fabricated through relatively simple processes, there are more 
production and processing processes for graphene electrodes. In one of 
these processes, graphene oxide is modified using a chemical oxidation 
process. Graphene oxide is amphiphilic and exhibits a distribution of 
hydrophilic to hydrophobic properties from the edge to the centre of the 
graphene flakes. 

Based on this property, Wu et al.[134] developed a liquid 
single-electrode TENG (LS-TENG) based on graphene oxide dispersion 
(GO LS-TENG) with high flexibility, deformability, and good mechanical 
properties. The LS-TENG used graphene oxide (GO) dispersions as liquid 
electrodes and flexible PDMS as triboelectric layers. The manufacturing 
process is illustrated in Fig. 7a. First, PDMS was poured into a 
pre-assembled aluminum plate as a mould for post-curing. The GO 
dispersion was then coated inside two PDMS films. Fig. 7b clearly shows 
that the GO LS-TENG produced opposite voltage signals when the skin 
exerted and removed pressure. As shown in Fig. 7c, the GO LS-TENG was 
used as a skin sensor, which has a high sensitivity to tiny contact 
movements, such as finger contact. The high sensitivity of the GO 
LS-TENG has potential application as a body-motion state sensor and 
e-skin. He, Wu, and Guo et al.[135,136,187] also conducted a study of 
graphene oxide as an electrode material. 

In addition to the chemical modification process, the laser direct 
writing (LDW) technique can be used to produce highly conductive 
porous graphene in wood, cloth, and paper[188,189]. Yan et al.[133] 
proposed a facile and efficient general-purpose LDW technique for the 

Fig. 6. Graphene electrode material (a) Structure of a self-powered stretchable TENG (S-TENG) touch sensor. (b) Sensitivity of S-TENG. (c) Results in a trajectory 
mode. (d) Real-time mapping trajectory mode to which the logical filter process, (e) Schematic of the fabrication process flow of crumpled graphene (CG). (f) Output 
voltages of TENGs with different εpre values. (g) Real-time voltage changes for finger bending at two different angle. (h) Schematic of the conformal TENGs formed on 
human skin. (i) Voltage output of the self-powered contact sensors in contact with the different number of fingers. (j) VOC of the four different sequences corre-
sponding ‘L′, ‘O′, ‘V′, and ‘E′. 
(a-d) Reproduced with permission [184] (Copyright 2019, Elsevier). (e-g) Reproduced with permission [128] (Copyright 2017, Wiley-VCH). (h-j) Reproduced with 
permission [185] (Copyright 2016, Elsevier). 
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fabrication of patterned laser-induced graphene (LIG) electrodes. Based 
on this technique, they designed a flexible triboelectric sensing array 
(TSA) for tactile sensing. The structure and fabrication method are 
illustrated in Fig. 7d. TSA is composed of silicone rubber as a protective 
and triboelectric layer and two laminated LIG-embedded PI films, pro-
duced using precisely programmable LDW. The two semi-circular array 
electrode layers overlapped in a reverse complementary manner. 
Figs. 7e and 7f demonstrate the stable performance of the TSA for 
multi-touch sensing. Fig. 7g and 7h show the TSA as a self-powered 
sensor, where the sensor voltage signal was passed through a micro-
controller and wireless Bluetooth module, demonstrating the ability of 
the TSA as a smart wireless control and self-powered sensor. In this 
study, the TENG based on the LIG-patterned electrodes provided a 
reference for building self-powered wireless control systems and 
real-time tactile sensing systems. The application of laser direct writing 
technology has considerably improved the stability of sensors, which 
also makes LDW technology favoured by more researchers. 

Jiang et al.[131] developed a highly flexible TENG based on an 
MXene and polydimethylsiloxane (PDMS) composite (PDMS/MXene) 
film and an LIG electrode, and its structural diagram is shown in Fig. 7i, 
with the porous PDMS/MXene film as the triboelectric layer. To fabri-
cate highly flexible LIG electrodes, a convenient laser-induced technique 
was applied, and it prepared 3D porous multi-layer graphene on a PI 
substrate at room temperature. After arranging the TENGs in an array, 
the track information was identified according to the signal generation 
sequence of each sensing unit. Fig. 7j shows that as a writable sensor, 
when a ‘Z′-shaped track is drawn on the TENG, similar to drawing on a 
paper, the corresponding voltage signals were obtained by measuring 
different sensor units (as shown in Fig. 7k). Wang and Tao et al.[190, 
191] also applied LDW technology to fabricate patterned electrodes. 

Carbonaceous nanomaterials are widely used in triboelectric pres-
sure sensors for the merits of high conductivity, rich forms and de-
rivatives. Carbonaceous nanomaterials have superior oxidation 
resistance compared with metals, which makes them more suitable for 
electrode materials of sensors in oxidizing environments. CNT is a reli-
able material to improve sensing performance with low difficulty. CNT 
can be manufactured as an electrode by most technology like coating 
and spraying. Graphene not only has excellent conductivity and oxida-
tion resistance, but also has high transparency and flexibility. Therefore, 
graphene is the optimum electrode material for e-skin. Graphene oxide 
has more advantages like largescale production and easy processing 
compared to graphene, which are of great significance for the wide use 
of graphene oxide in the future. 

3.3. Triboelectric pressure sensor based on hybrid electrode materials 

The use of hybrid electrode materials to improve the physical 
properties of electrode materials or to improve the voltage signal output 
of TENGs is in great demand for research in recent years. 

3.3.1. Conductor and semiconductor hybrid electrodes 
Innovative selection and processing technologies have been devel-

oped and extensively studied for hybrid electrodes of conductors and 
semiconductors. Zhou et al.[192] reported a e-skin based on 
ultra-stretchable triboelectric nanogenerator (STENG) and simulta-
neously designed a conductive network of redox graphene (rGO) com-
bined with AgNWs in a multilayer flexible structure. Fig. 8a shows the 
fabrication process of the conductive network of rGO combined with the 
AgNWs, where rGO was sonicated for 1 h and then dispersed in ethanol. 
AgNWs stored in ethanol were uniformly mixed with the rGO dispersion 

Fig. 7. Graphene oxide and laser-induced graphene. (a) Fabrication process of a liquid single-electrode TENG (LS-TENG) based on graphene oxide dispersion (GO LS- 
TENG). (b) Open-circuit voltage levels when performing the pressing and releasing operations. (c) Output VOC of GO LS-TENG when two fingers perform the touching 
and releasing operations. (d) Schematic of fabrication process of triboelectric sensing array (TSA). (e) Multi-point touch mode. (f) Output voltages of pixels when 
being touched. (g) LED that is wirelessly controlled by the human–machine interactions (HMI) system. (h) Enlarged photograph of the LED. (i) Structural diagram of 
a TENG used for human writing process. (j) Z-shaped writing path. (k) Measured voltage signals. 
(a-c) Reproduced with permission [134] (Copyright 2019, Elsevier). (d-h) Reproduced with permission [133] (Copyright 2021, Elsevier). (i-k) Reproduced with 
permission [131] (Copyright 2019, Elsevier). 
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after high-speed stirring. Finally, the mixed solution of rGO and AgNWs 
was uniformly attached to the thermoplastic polyurethane (TPU) fibre 
mat by spraying. Fig. 8b shows the e-skin based on STENG. The overall 
structure comprised nine layers of TPU and eight layers of rGO and 
AgNW conductive layers. The top TPU served as the triboelectric and 
protective layers, and the bottom TPU material served as the encapsu-
lation layer. The conductive layer of the multilayer structure improved 
the stretchability and flexibility of the e-skin while providing tribo-
electric output performance. In practical applications, multiple single 
sensing units are integrated to form a wearable self-powered e-skin array 
that realises the functions of finger-touch mapping feedback, as shown 
in Fig. 8c. The results show that the e-skin in this study is capable of skin 
touch trajectory sensing, reflecting the potential application value of 
TENG sensors in human–computer interaction. 

The method for forming a mixture before processing was adopted in 
the aforementioned study. Different materials can be processed indi-
vidually using different processing technologies. Yang et al.[193] pre-
sented a fully stretchable TENG consisting of an intrinsically stretchable 
MXene/silicone elastomer and AgNW graphene foam nanocomposite. 
The fabrication process of AgNW graphene foam nanocomposite is 
shown in Fig. 8d. First, 3D porous LIG foam electrodes were fabricated 
by direct laser heating of a 75 µm-thick PI film. After transferring the LIG 
electrode onto the flexible silicone rubber substrate, pre-straining, and 
spraying AgNW solution on the pre-stretched LIG/PDMS-Ecoflex elec-
trode, a stretchable AgNWs/LIG electrode was prepared by releasing the 
pre-strain. An exploded structural view of the fabricated TENG is shown 
in Fig. 8e. The top nylon layer and bottom PDMS-Ecoflex composite film 
were used as the encapsulation layer, the MXene/PDMS-Ecoflex com-
posite film was used as the triboelectric layer, and the porous Ag 
NWs/LIG composite was used as the electrode layer. When the TENG 
with this structure was used as a sensor for the human joint 

motion-sensing function, as shown in Fig. 8f, the output electrical signal 
of the TENG produced stability differences corresponding to the 
different joint-bending angles. When used as a self-powered sensor 
attached to the human skin, it could adapt to the bending changes to the 
joints in different parts and perform real-time motion monitoring. This is 
a solid step in the application of TENGs as self-powered biological 
sensors. 

Similarly, Xu et al.[93] adopted successive processing, where they 
designed a transparent and stretchable e-skin. This e-skin used AgNWs 
coated with graphene quantum dots as the electrode layer, and its 
structure is shown in Fig. 8g. The fabrication process of the electrode 
layer is to treat PDMS and AgNWs with oxygen plasma first to increase 
hydrophilicity. Then, the AgNWs were deposited on the PDMS layer, and 
the graphene quantum dots were blade-coated on the surface of the 
AgNW film and annealed at 90 ◦C for 20 min. Finally, the graphene 
quantum dots were attached to the silver nanowires via van der Waals 
forces. Fig. 8h shows an obvious difference in the current generated by 
the sensor under different external pressure excitations. Based on the 
variability of the current, it is possible to record the contact and pressing 
actions of the fingers when using different degrees of pressing buttons on 
e-skins. This study should have a high reference value for future studies 
on e-skin, and prosthetic sensing. Li and Chen et al.[194,195] also used 
conductor and semiconductor hybrid electrodes to fabricate triboelec-
tric sensors with excellent performance. 

3.3.2. Conductor/semiconductor and polymer hybrid electrode materials 
Conductor/semiconductor and polymer hybrid materials, have good 

conductivity and electronegativity. Wang et al.[138] designed a 
self-powered triboelectric tactile sensor with polydimethylsiloxane 
(PDMS) as the triboelectric layer and PDMS/eutectic gallium indium 
(EGaIn) alloy as the composite electrode. The sensor is characterised by 

Fig. 8. Conductor and semiconductor hybrid electrodes. (a) Schematics of the preparation process and equipment for fabricating an e-skin. (b) Schematic of an e-skin 
structure. (c) Schematic of a flexible tactile sensing e-skin array. (d) Process flow diagram of the stretchable porous MXene/LIG foam-based TENG preparation. (e) 
Schematic of the MXene/LIG foam-based TENG structure. (f) Output from the self-power strain sensor at various wrist-bending angles. (g) Schematics of the e-skin 
and graphene quantum dot-coated AgNW (G-AgNW) network. (h) Short-circuit current density output for the e-skin with graphene QDs when the e-skin is pressed. (i) 
Photograph of a keyboard being tapped with smart artificial fingers. (j) Time evolution of the current density when the index finger touches and taps a key. 
(a-c) Reproduced with permission [192] (Copyright 2020, Elsevier). (d-f) Reproduced with permission [193] (Copyright 2022, Elsevier). (g-j) Reproduced with 
permission [93] (Copyright 2018, Elsevier). 
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a simple manufacturing process and low cost. Fig. 9a shows the fabri-
cation process flow of this TENG. First, the multi-layer structure and 
wrinkle structure of sandpaper were used as the mould, effectively 
improving the surface roughness and contact area of the triboelectric 
layer PDMS. The high electrical conductivity of the PDMS/EGaln com-
posite electrode material improves the triboelectric output performance. 
Fig. 9b shows a schematic of the working principle of the pressure 
sensor. The working cycle process of the TENG was realised through the 
application and release of an external force. Fig. 9c shows the linear 
relationship between the output voltage of the triboelectric sensor and 
the applied external force in the experimental test results. It can be seen 
from the figure that the TENG sensor maintained stable sensitivities of 
0.293 mV/Pa and 0.103 mV/Pa in the pressure ranges of 0.23–13.12 
kPa and 13.12–95.95 kPa, respectively. According to the different 
pressure sensitivities of the two intervals, the voltage signals were pro-
cessed and used for the detection of the human pulse physiological 
signal (Fig. 9d). This composite self-powered triboelectric tactile sensor, 
with an ultra-low detection limit and high sensitivity, provides a new 
reference for the development of next-generation electronic devices. 

Successive moulding process has the characteristics of a simple 
structure and simple manufacturing. However, more sophisticated pro-
cessing technologies can significantly improve the performance stability 
of hybrid electrode materials. Wang et al.[121] introduced a 
self-powered triboelectric tactile sensor (TETS) that used Ag nanofibres 
(AgNFs) as electrodes. The fabrication process of the AgNFs is shown in 
Fig. 9e. First, by changing the shape of the metal collector during the 
electrospinning process, different types of polyvinyl alcohol nanofibres 
(PVA NFs) with controllable orientations were obtained. A thin layer of 
silver was then deposited on the surface of the PVA NFs by magnetron 

sputtering. Finally, nanofibres with a PVA/Ag core/shell structure were 
formed, and this composite fibre had excellent electrical conductivity. 
The layered structure of the TENG is shown in Fig. 9f, which consists of 
the PDMS electrification layer, row AgNF electrode, PDMS insulator 
layer, column AgNF electrode, and bottom PDMS substrate from top to 
bottom. Fig. 9g shows that after the sensor array was made, the 
multi-channel data acquisition system was used to realise the function of 
touch point positioning. Therefore, when the continuous track touches 
the sensor array, the track feedback function, as shown in Fig. 9h, can be 
realized. The single-electrode tactile sensor in this study realises the 
tactile mapping feedback function, which provides a new concept for the 
application of self-powered sensors in wearable devices and smart 
touchpads. Hybrid electrodes of semiconductor and polymer materials 
also exhibit excellent performance. 

Peng et al.[29] used co-extrusion blow film moulding technology to 
prepare a large-area sandwich-film-based TENG (LSF-TENG). The 
sandwich structure of the LSF-TENG consists of upper and lower layers 
of PP and carbon nanotubes compounded with a CNTs/PP phase in the 
middle. Fig. 9i shows the fabrication process diagram of CNTs/PP. The 
dried PP particles were mixed with CNTs, and the CNT/PP particles were 
extruded through an extruder (extruder). The LSF-TENG was prepared 
by blowing particles into a tubular film through a co-extrusion blow film 
moulding method. Fig. 9j shows that the LSF-TENG was cut into strips 
(4 mm × 50 mm) for the self-powered biomimetic whiskers(SPBWs). 
When SPBWs slide across a surface with continuous grooves, the voltage 
signal generated by a weak disturbance is collected by the acquisition 
card and displayed on the computer in real time. Subsequently, ac-
cording to the number of voltage signal peaks at a certain time, the 
distance and speed of movement can be obtained. According to this 

Fig. 9. Conductor/Semiconductor and Polymer Hybrid Electrode Materials. (a) Fabrication process of self-powered triboelectric tactile sensor with PDMS/EGaIn 
alloy electrode. (b) Fundamental working mechanism of self-powered triboelectric tactile sensor. (c) The sensitivities of the tactile sensor in the whole testing 
pressure range, (d) The stretchable self-powered triboelectric tactile sensor attached to the wrist of the human subject. (e) Schematic illustration of the electro-
spinning with different collectors to obtain various PVA NFs with controlled fiber orientation. (f) Schematic structure of the TENG. (g) The multi-channel data 
acquisition system is used to realize the function of touch point positioning. (h) When the continuous track touches the sensor array, the track feedback function can 
be realized. (i) Schematic fabrication of a large-area sandwich-film-based TENG(LSF-TENG). (j) LSF-TENG is used for self-powered biomimetic whiskers (SPBWs). (k) 
Schematic diagram of the process of automated guidance. 
(a-d) Reproduced with permission [138] (Copyright 2018, Wiley-VCH). (e-h) Reproduced with permission [121] (Copyright 2020, Elsevier). (i-k) Reproduced with 
permission [29] (Copyright 2022, Elsevier). 
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function, the process of automatic guiding and motion state monitoring 
of a smart car can be realised (Fig. 9k). In future research, automatic 
obstacle avoidance driving of the car and texture recognition feedback 
of the contact surface can also be realised. The sensitive tactile 
perception of SPBWs is an important technical reference for subsequent 
self-powered tactile perception technology. Rasel and Zhao et al.[85, 
196] also used a hybrid electrode of a semiconductor and polymer 
material as the electrode material of the triboelectric sensor. 

Hybrid electrode materials made of two or more different types of 
materials can often integrate the advantages of various materials to 
improve the comprehensive performance. Most hybrid electrode mate-
rials have the characteristics of high conductivity, flexibility and 
ductility. However, the more types of materials involved, the more 
complex the manufacturing process of hybrid electrode materials. 

3.4. Gel electrode materials 

Gel electrode materials have been widely studied in recent years. Gel 
electrode materials include ionic gel and hydrogel, which are mainly 
used in human health perception and e-skin. 

Gel materials include hydrogels and ionogels. They exhibit good 
biocompatibility and are widely used in the manufacture of human skin 
sensors and wearables. Yang et al.[70] reported a flexible stretchable 
polyvinyl alcohol/phytic acid (PVA/PA) hydrogel for self-powered HMI 
sensing (Fig.10a-(i)) in an intelligent medical system based on a TENG. 
The structure of the PVA/PA hydrogel-based TENG (PH-TENG) is shown 
in Fig.10a-(ii). Ecoflex acts as a triboelectric material and as a sealing 
material to prevent water loss from hydrogels and is used to encapsulate 
PVA/PA hydrogel electrodes. Freeze–thaw cycles are a common method 
for preparing PVA hydrogels because the freezing of PVA and phase 

separation leading to gelation occur during the process. Therefore, 
PVA/PA hydrogels were prepared by a one-step freeze–thaw method, as 
shown in Fig. 10a-(iii). Fig. 10b shows that the triboelectric sensor was 
fixed to the fingers of both hands. Through multi-signal acquisition, 
different information content can be conveyed through different ges-
tures. Fig. 10c shows different gesture combinations in which the ‘HELP’ 
message was transmitted to correctly express the seeker’s needs. This 
study is expected to develop into an alternative strategy in the field of 
human–machine interfaces in medical care and can be extended to other 
fields, showing broad implications in smart flexible electronics and the 
brain–machine interfaces. 

Zhao et al.[44] used another ion gel material in their research. They 
designed and fabricated a stretchable and highly flexible skin-adaptive 
self-powered triboelectric sensor that can be used in physiological 
fields such as tactile sensing and joint limb bending sensing. The 
structure of this TENG is shown in Fig. 10d; it consists of a transparent 
stretchable ion gel as electrodes and one triboelectric layer, with 
micro-patterned PDMS as another triboelectric layer. This triboelectric 
sensor has strong stretchability and can maintain a good linear rela-
tionship between the voltage and pressure under different tensile 
strains, as shown in Fig. 10e. Therefore, it also shows very good per-
formance when used as a limb joint motion-sensing sensor. Fig. 10f 
shows the experimental results of the sensor for finger tactile perception 
and finger joint curvature perception. Evidently, the triboelectric sensor 
in this study has broad application prospects in the perception of human 
body movement posture, respiration, and pulse. 

In addition to ion gels, the application of hydrogel materials in-
creases the abundance of gel-type triboelectric materials. Lee et al.[145] 
developed self-cleanable, transparent, and attachable ionic communi-
cators (STAICs) based on TENG. Fig. 10g shows the fabrication process 

Fig. 10. (a) Overview of a PVA/PA hydrogel-based TENG(PH-TENG) assembled on the finger for health monitoring. (b) The combination of different gestures 
expresses the word. (c) The word “help” is displayed on the interface of the system. (d) Layered structure of the sensor. (e) VOC of the sensor at different ratios of 
tension under different force at 1 Hz. (f). The triboelectric signal of the sensor generated by touching and bending. (g) Fabrication process of self-cleanable, 
transparent, and attachable ionic communicators (STAICs). (h) Generated voltages of a STAIC by a gentle touch to a fabric and the skin. (i) Demonstration of 
real-time communication with STAICs. 
(a-c) Reproduced with permission [70] (Copyright 2022, Elsevier). (d-f) reproduced with permission [44] (Copyright 2019, Elsevier). (g-i) Reproduced with 
permission [145] (Copyright 2018, Nature Portfolio). 
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flow of STAICs. The dried and cured PDMS was immersed in 15 wt% 
ethanol solution of benzophenone for 10 min and washed with methanol 
to activate the elastomer surface. The hydrogel solution was poured over 
the activated bottom PDMS layer and covered with the top PDMS layer. 
The hydrogels formed chemical bonds with PDMS by directly curing the 
hydrogel precursors onto the benzophenone-absorbing PDMS surface, 
followed by 365 nm UV irradiation for one hour. A self-assembled 
monolayer (SAM) was formed using vapour. Pt electrodes were inser-
ted into the hydrogel via encapsulated PDMS to measure the electrical 
properties of the STAICs. Fig. 10h shows the different voltage signals 
generated by STAICs as self-powered sensor devices when they touch 
clothing and skin. Here, the STAICs were attached to fingers, and each 
finger action combination was designed to correspond to different letter 
inputs. As shown in Fig. 10i, according to different letters corresponding 
to different gestures, different gestures can be used to send letter in-
structions, and the function of information transmission can be realised. 
As shown in the figure, the researcher successfully completed the input 
of the word ‘DREAM’. Therefore, STAICs can be used as real-time 
human–computer interaction devices by collecting the gentle touch 
signals of fingers. The STAIC opens new avenues for wider applications 
of stretchable ions, soft robotics, and self-powered biomechanical mo-
tion monitoring systems. He and Long et al.[197,198] also adopted 
conductive-gel materials as electrode materials for triboelectric sensors. 

Gel electrode materials exhibit excellent stretchability, high trans-
mittance and biocompatibility, making them the significant materials 
for triboelectric pressure sensors in the field of human-machine in-
terfaces and monitoring systems for biomechanical motion. 

4. Summary and perspectives 

The selection of electrode materials for the triboelectric sensor, the 
application of processing technology, and the performance of the sensor 
in the research work detailed in this paper are summarized in Table 2. 

The triboelectric pressure sensors with various electrode materials 
and electrode structures show different performance characteristics. The 
triboelectric pressure sensor with conductor electrode material has a 
wide pressure monitoring range and high sensitivity. However, the 
electrode with woven fabric structure will sacrifice some sensitivity 
while improving the flexibility of the electrode. The triboelectric pres-
sure sensor with semiconductor electrode material also has a wide 
pressure monitoring range. The high-precision processing technology of 
carbonaceous nanomaterials provides strong support for the stable 

monitoring sensitivity of the triboelectric pressure sensor. The perfor-
mance of triboelectric pressure sensor with hybrid electrode materials 
mainly depends on the type of hybrid electrode materials and processing 
technology. The hybrid electrode materials prepared by two or more 
materials can make up the advantages and disadvantages of different 
materials, and make the electrode materials have multiple performance 
advantages at the same time. The triboelectric pressure sensors using gel 
electrode materials have high biocompatibility and extensibility. 
Therefore, most of the triboelectric pressure sensors using gel electrode 
materials have different sensitivity at diverse stretching ratios. 

Self-powered pressure sensors based on TENGs have been widely 
used in wearable devices, human–computer interactions, health moni-
toring, and other fields owing to their advantages of being self-powered 
and high sensitivity. However, triboelectric pressure sensors still have 
unresolved issues in terms of material selection, fine manufacturing 
process of materials, and sensor fabrication costs in different application 
environments, hindering their development as self-powered pressure 
sensors in various fields. 

By making changes in the selection of materials for fabricating 
TENGs, selecting electrode materials with the characteristics of a stable 
electrical signal, high durability, and high adaptability to the applica-
tion environment can effectively improve practical applicability in some 
fields. For example, in the application of e-skin and wearable devices, 
semiconductor materials such as carbon fibre, graphene, and its de-
rivatives have been selected as electrode materials. 

Owing to their good conductivity, flexibility, corrosion resistance, 
and other characteristics, semiconductor electrode materials are the best 
choice for flexible pressure-sensor electrode materials. It is also possible 
to improve the sensing accuracy and sensitivity of the TENG pressure 
sensors by refining the processing technology of the electrode material. 
For example, for the micro–nano-structure processing of conductor 
electrode materials, the selection of nano-scale materials, such as 
AgNWs and CNTs, can provide a highly convenient material selection for 
the preparation of micro-nano-scale electrode materials. 

More number of complex processing technologies that use high- 
precision instruments and equipment can be used to process the elec-
trode materials. For example, LDW, mask lithography, and other fine 
processes can not only complete nanoscale processing, but also finely 
process patterned electrodes with different design requirements. More 
importantly, the electrode material adopts fine processing technology, 
which can considerably improve the performance uniformity of multiple 
sensors of the same type. The main principle is that the surface treatment 

Table 2 
Summary of Triboelectric Sensor Technology and Characteristics.  

Electrode type Electrode material Structure/Process Sensitivity Monitoring range Ref. 

Conductor electrode Cu Array 53.7 mV/Pa 
5.3 mV/Pa 
1.2 mV/Pa 

0.1–0.7kPa 
2.5–21.5kPa 
25.5–37.5kPa 

[47] 

Ag Array/magnetic sputtering 0.06kPa− 1 < 80kPa [84] 
AgNWs Nanowire 0.011kPa− 1 < 40kPa [95] 
Steel Textile  < 6 N [171] 
Cu Textile/PAMD 0.071VkPa− 1 

,0.008 VkPa− 1  
[172] 

Cu Textile 1.02VN− 1, 
0.15 VN− 1 

0–5 N 
6–45 N 

[173] 

Semiconductor electrode CNT Nanotube 0.21 µA kPa− 1 10–40 Pa [180] 
CNT Nanotube 1.52mVPa− 1, 1.073mVPa− 1 0–13kPa 

13–29kPa 
[181] 

Graphene Coating 0.274VkPA− 1 10.6–101.7kPa [184] 
Hybrid electrode AgNWs& rGO Network/ Spraying 78.4kPa− 1 

16.1kPa− 1 
< 5kPa [192] 

AgNWs& LIG LDW - < 17 N [193] 
EGaln& PDMS Molding 0.293mVPa− 1, 

0.103 mVPa− 1 
< 100kPa [138] 

Gel electrode Ionogel PAMPS ionogel 0.378 VN− 1(0% strain) 
0.867 VN− 1(10% strain) 
1.822 VN− 1(50% strain) 
1.444 VN− 1(80% strain) 

- [44]  
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of the electrode material by the fine process can keep the surface micro- 
nano structural properties of the electrode material highly similar, so 
that the charge distribution on the surface of the electrode material 
remains uniform. Fig. 11. 

The above summary of electrode material selection and treatment 
processes also reveals the future development direction of electrode 
materials for triboelectric pressure sensors. The primary development 
directions include the development of more abundant material types, 
increased sensitivity, enhanced flexibility, and simplified processes. 

4.1. Develop new materials 

In a practical application environment, the triboelectric pressure 
sensor will inevitably face environment complexities such as high hu-
midity, high-frequency friction, and salt corrosion. The abundant se-
lection of electrode materials can provide electrode materials with 
improved environmental adaptability for triboelectric pressure sensors 
in various application environments. In previous studies, single mate-
rials such as conductors and semiconductors have already exhibited 
excellent conductivity and durability. However, hybrid-type electrode 
materials show outstanding flexibility. In the future, the development of 
new materials will be an important research direction for triboelectric 
pressure sensors. 

4.2. Increase sensitivity 

As a type of pressure sensor, triboelectric pressure sensors naturally 
need to show excellent sensitivity. Therefore, more precise nano-scale 

and micro-scale processing technologies are required to improve the 
sensitivity of the sensors. For example, the commonly used 10.2 μm laser 
direct writing, magnetic pole sputtering, and electrostatic spinning 
technologies have effectively improved the sensitivity of triboelectric 
sensors. Therefore, using greater precision processing technologies to 
process materials is a crucial area of research in the future. 

4.3. Enhance flexibility 

With the rapid development of e-skin and wearable devices, the 
flexibility of triboelectric sensors has increased. Conducting treatments 
on flexible materials and altering the spatial organisation of materials 
are the main ways to improve the flexibility of electrode materials. For 
example, flexible conductive hydrogel materials exhibit both conduc-
tivity and excellent flexibility. The reconstruction of the material space 
structure can use silk wire electrode material to fabricate fabric structure 
electrodes. Therefore, a crucial area of research for triboelectric sensors 
in the future is to increase their flexibility. 

4.4. Simplify process 

At present, the electrode material processing technology of tribo-
electric pressure sensors is limited by complex processes and high cost. 
Multiple procedures are frequently necessary to increase the perfor-
mance of sensors, which also results in complex operations. Too many 
technological processes also significantly affect the production of sen-
sors. However, although the use of high-precision machining technology 
can improve sensor sensitivity to a certain extent, it also increases 

Fig. 11. Conclusions and perspectives of triboelectric pressure sensors.  
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processing complexity and costs. Simplifying the process while consid-
ering sensor performance and cost is a necessary problem. The update of 
material pre-treatment technology and high-precision machining tech-
nology will better balance the development requirements of simplifying 
the manufacturing process and improving the sensing performance in 
the future. Therefore, simplifying the triboelectric pressure sensor ma-
terial manufacturing technology is also a key area for future studies. 
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