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Abstract
In conventional differential evolutionary (DE) algorithm, mutation operator has sig-
nificant influence on generating new vectors by mixing existing target vectors ran-
domly selected from the current population. Recently, many mutation operators, 
which usually employ the best individual or some high-quality individuals randomly 
chosen, have been proposed to improve searching capability. However, such designs 
may easily suffer from premature convergence trapped by local optima. To make 
a trade-off between exploration and exploitation capability, this paper proposes a 
novel collective intelligence (CI)-based mutation operator, which is named as “cur-
rent-to-sa-ci-best.” In the presented mutation operator, the evolutionary informa-
tion of m best target vectors is linearly combined to generate new mutant vectors. 
Besides, m is designed as an exponential-distributed random number which could 
be self-adapted based on successful records of m values alongside evolution. Moreo-
ver, this mutation operator could be applied to any DE algorithm without destroying 
existing search capability by adding a greedy selection operator. To verify its effec-
tiveness, the proposed CI-based mutation strategy, which is named as SaCI, was 
embedded into some state-of-the-art DE variants on 28 CEC2013 benchmark func-
tions. Numerical results have confirmed that the SaCI operator may be beneficial to 
DEs to some extent.

Keywords Differential evolution · Mutation · Self-adaption · Collective intelligence

1 Introduction

Differential evolution (DE) algorithm has become very popular due to its simplicity 
and effectiveness since 1990s [19]. DE and its high-cited variants have been widely 
used to solve many real-world engineering problems on various domains such as 
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PID tuning [21], power system [4, 26], parameter identification [22], time series pre-
diction [8], feature selection [1] and clustering [6]. The performance of DE relies 
on the evolutionary operators (mutation, crossover and selection) and the control 
parameters [5]. Generally speaking, the mutation process is the key operator to gen-
erate new promising vectors. Well, the most appropriate mutation and correspond-
ing parameter settings required by DE should be different and adapted to solve dif-
ferent optimization problems and evolving stages [23]. Besides, it is inefficient and 
time-consuming to use trial-and-error approach for determining the best mutation 
strategy [24]. Thus, it is very important and challenging to develop a self-adaptive 
mutation operator to fit various optimization problems during the whole evolution 
process.

Since the last decade, papers on designing efficient mutation strategies naturally 
have attracted increasing attention. In MPEDE [24], the authors proposed a multi-
population-based approach to realize an ensemble of three mutation strategies, i.e., 
“current-to-pbest/1,” “current-to-rand/1” and “rand/1.” CoDE [23] just simply used 
three trial vector generation strategies and three control parameter settings. It ran-
domly combined them to generate trial vectors. Similarly, EPSDE [24] proposed an 
ensemble of up to 8 mutation strategies and a pool of control parameters settings. 
In SaDE [17], the authors employed a pool of mutation strategy and its self-adapted 
selection mechanism by learning from their previous experiences. Some other DE 
algorithms such as JADE [27] and MDE_pBX [14] employed mutation strategies 
which selected one from a group of top ranked vectors or the best group from a 
randomly selected subset of the population. Overall, for mutation operator, there are 
a few shortcomings for the above methods: (1) It is difficult to determine the size 
of the mutation-strategies pool, as well as each mutation strategy. (2) New control 
parameters are usually added into the mutation-operator-selected process from the 
ensemble of mutation strategies. Based on these observations, we will develop a 
novel self-adaptive mutation strategy by using collective intelligence (CI) for DE 
algorithms.

CI [18] is group intelligence generated from the collaboration, collective efforts, 
and competition of many individuals and appears in consensus decision-making. 
This new intelligence phenomenon also could be defined as “the capacity of human 
communities to evolve toward higher-order complexity and harmony, through such 
innovation mechanisms as differentiation and integration, competition and collabo-
ration” [28]. CI may achieve a collective wisdom in some cases and outperform the 
performance of the smartest individual within the group, although the majority of 
the group members are not experts. It has been successfully used in many applica-
tions such as interactive debugging [16], maximum power point tracking [25], non-
linear constrained optimization [9], business [20], sensor network [15] and predic-
tion [2]. In this paper, we would try to embed CI into DE algorithm to generate a 
mutant vector mixed with some top ranked individuals in a collaborative manner 
without introducing any control parameter. More details could be seen in Sect. 3.

The main contribution of this paper is that we propose a novel mutation operator 
by using CI without designing a complex strategy selection mechanism, resulting in 
a simple but effective mutation vector. Besides, the present mutation operator, which 
is named as “current-to-sa-ci-best,” could be self-adapted based on records of the 
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previous successful vectors by using an exponential distribution model. Many recent 
DE variants had introduced new control parameters to peruse better performances, giv-
ing recommended values for the control parameters. Different from the other new pub-
lished DE algorithms, the presented mutation operator by using CI does not introduce 
any new control parameters. Further, the self-adaption mechanism of SaCI operator 
would be easily applied to almost all the existing DE algorithms, without destroying the 
searching ability of the original algorithm. It may be summarized as the main advan-
tage of the proposed SaCI mutation operator.

The remainder of this paper is structured as follows: In the next section, related 
works on structure of conventional DE algorithm will be introduced. In Sect. 3, self-
adaptive CI-based mutation operator will be proposed. In Sect.  4, comprehensive 
experimental results on CEC2013 benchmark functions will be shown and discussed. 
Finally, the contributions of this paper would be summarized in Sect. 5.

2  Conventional DE algorithm

DE algorithm is trying to evolve a population at each generation G, which could be 
denoted as Xi, G = (xi,G1, x2

i, G, …, xDi, G|i = 1, 2, …, NP), where NP is the population 
size and D is the dimension of the problem. After initialization, DE enters a loop of 
evolutionary operations: mutation, crossover and selection.

2.1  Mutation

DE algorithm employs the mutation operator to generate a mutant vector Vi,G with 
respect to each individual Xi,G, which is named as target vector. At the generation G, its 
corresponding mutant vector Vi,G = (v1

i, G, v2
i, G, …, vDi, G) would be generated via various 

mutation strategies. In this section, we would give a review on the five most frequently 
used mutation strategies as follows:

DE/rand/1 [7] 

DE/best/1 [7] 

DE/rand-to-best/1 [17] 

DE/best/2 [7] 
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DE/rand/2 [17] 

where the indices ri1, ri2, ri3, ri4, ri5 and i are exclusive integers randomly generated 
within the range from 1 to NP. The scale factor F is a positive control parameter for 
scaling the difference vector. Xbest,G is the best individual with the best fitness value 
in the current population at generation G.

2.2  Crossover

After the mutation operator, crossover operation is used to generate a trial vector 
Ui,G for each pair of Xi,G and Vi,G. In the basic version, the binomial crossover is 
usually adopted as follows (Wang et al. 2016):

In Eq. (6), the crossover rate Cr is a pre-defined constant within the range [0, 1]. 
jrand is a randomly integer within the range [1, D]. randj is a uniformly distributed 
random number generated within [0, 1].

2.3  Selection

Before selection operation, the objective function values of all trial vectors are eval-
uated. After that, a selection operation is performed. f(Ui,G) and f(Xi,G) are objective 
function values of trial vector and its corresponding target vector, respectively. The 
selection operator could be defined as follows:

The three basic operators above are looped till the specified termination criteria 
are met. The algorithmic description of the conventional DE algorithm is displayed 
as follows:
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{

�i,G, if f (�i,G) < f (�i,G)

�i,G, otherwise
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3  Self‑adaptive CI‑based mutation operator

In this part, a novel self-adaptive CI-based mutation strategy, which is denoted as 
“current-to-sa-ci-best,” is presented. This mutation operator uses collective informa-
tion of some top ranked and randomly selection vectors to generate mutant vector, 
which is described as follows:

where Xi,G is the ith target vector, �ri
1
,G and �ri

2
,G are two randomly selected distinc-

tive vectors from the current population, and Xsa_ci_best,G is a collective vector which 
could be defined as follows:

In Eq. (9), the proposed collective vector is a linear combination of m top ranked 
vectors. The weighting wk determines the contribution of each chosen vector within 
m top ranked vectors. Here, we provide an expression of wk as follows:

(8)�sa_ci_i,G = �i,G + F ⋅

(

�sa_ci_best,G − �i,G

)

+ F ⋅

(

�ri
1
,G − �ri

2
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(9)�sa_ci_best,G =

m
∑

k=1

wk ⋅ �k,G

(10)wk =
m − k + 1

1 + 2 +…+ m
for k = 1, 2,…m.
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In Eq. (9–10), m has great influence on the quality of collective vector. If m is set 
to 1, the proposed mutation strategy “current-to-sa-ci-best” would be simplified as 
“current-to-best/1.” If m is set to NP, the collective vector would become the aver-
age value of the whole population. Different from CIMDE [28], which just defined 
m as a random integer within [1, NP], m is designed as a randomly generated integer 
which obeys exponential distribution contributed by its fitness value with respect 
to Xi,G. In this paper, the whole self-adaption of m could be described as follows: 
(1) generate the probability pi of exponentially distributed random number whose 
mean is μ for each target vector i; (2) generate mi for ith target vector according to 
pi by using roulette wheel selection; (3) if a better trial vector is obtained, the mi 
value would be added into the successful record which is named as Sm; (4) estimate 
the mean value μ of the successful record Sm; (5) go to step (1). In the above steps, 
m is assumed as an exponential distribution random number with a mean value μ. 
Successful m values would be saved into Sm, and new m values will be generated 
according to Sm. Since m obeys exponential distribution, the value of m will gradu-
ally be close to 1. Thus, a positive feedback process, which ultimately brings each 
target vector closer to the linear combination of several globally top ranked target 
vectors, is formed. In summary, such a design would make m self-adapted accord-
ing to the previous successful m values without introducing any additional control 
parameter, resulting in a more powerful mutation strategy. To make the proposed 
SaCI mutation strategy clearer, the pseudocode of DE/current-to-sa-ci-best algo-
rithm is given below.
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For ease of comparison, the differences between Algorithm 2 and Algorithm 1 
are marked by using “«.” From the above pseudocode, we can see in each itera-
tion two different mutation vectors are generated for each target vector, finally 
resulting in two different trial vectors. In order to obtain the most outperform-
ing vector, a greedy selection operator is developed to choose the most promis-
ing vector among the three vectors in line 14–19. Such a greedy operator could 
guarantee that the searching capability of previous mutation strategy would not 
deteriorate. Besides, such a design makes the proposed SaCI mutation strategy 
easily applicable. Next, we will conduct a comprehensive comparison to test the 
performance of the proposed SaCI mutation strategy.
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4  Experimental results and analysis

In this part, the authors are trying to conduct comprehensive experiments to test 
the performance of the proposed SaCI mutation strategy. Benchmark functions pre-
sented in CEC2013 are chosen as the test suite. More details about the definition 
of benchmark problems are given in Table 1. The computational configurations are 
listed as follows:

• OS: Win 7.
• CPU: Intel i5 @2.60 GHz.
• RAM: 8G.
• Platform: Matlab 2012b.

Table 1  The 28 CEC 2013 benchmark functions used in the experiments

No. Functions D Range f(x*)

1 Shifted Sphere 10 [− 100,  100]D − 1400
2 Shifted Rotated High Conditioned Elliptic 10 [− 100,  100]D − 1300
3 Shifted Rotated Bent Cigar 10 [− 100,  100]D − 1200
4 Shifted Rotated Discus 10 [− 100,  100]D − 1100
5 Shifted Different Powers 10 [− 100,  100]D − 1000
6 Shifted Rotated Rosenbrock 10 [− 100,  100]D − 900
7 Shifted Rotated Schaffers F7 10 [− 100,  100]D − 800
8 Shifted Rotated Ackley 10 [− 100,  100]D − 700
9 Shifted Rotated Weierstrass 10 [− 100,  100]D − 600
10 Shifted Rotated Griewank 10 [− 100,  100]D − 500
11 Shifted Rastrigin 10 [− 100,  100]D − 400
12 Shifted Rotated Rastrigin 10 [− 100,  100]D − 300
13 Shifted Non-Continuous Rotated Rastrigin 10 [− 100,  100]D − 200
14 Shifted Schwefel 10 [− 100,  100]D − 100
15 Shifted Rotated Schwefel 10 [− 100,  100]D 100
16 Shifted Rotated Katsuura 10 [− 100,  100]D 200
17 Shifted Lunacek Bi_Rastrigin 10 [− 100,  100]D 300
18 Shifted Rotated Lunacek Bi_Rastrigin 10 [− 100,  100]D 400
19 Shifted Expanded Griewank plus Rosenbrock 10 [− 100,  100]D 500
20 Shifted Expanded Schaffer F6 10 [− 100,  100]D 600
21 Shifted Composition Function 1 (n = 5, Rotated) 10 [− 100,  100]D 700
22 Shifted Composition Function 2 (n = 3, Unrotated) 10 [− 100,  100]D 800
23 Shifted Composition Function 3 (n = 3, Rotated) 10 [− 100,  100]D 900
24 Shifted Composition Function 4 (n = 3, Rotated) 10 [− 100,  100]D 1000
25 Shifted Composition Function 5 (n = 3, Rotated) 10 [− 100,  100]D 1100
26 Shifted Composition Function 6 (n = 5, Rotated) 10 [− 100,  100]D 1200
27 Shifted Composition Function 7 (n = 5, Rotated) 10 [− 100,  100]D 1300
28 Shifted Composition Function 8 (n = 5, Rotated) 10 [− 100,  100]D 1400
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There are 28 benchmark functions used in the following experiments. Accord-
ing to their properties, they are categorized into three types: uni-modal problems 
(f1 − f5), basic multimodal problems (f6 − f20) and composition problems (f21 − f28). 
All the problems used in this paper are minimization problems. All test functions 
are shifted and scalable. Simulations terminate when reaching Max_FEs or the error 
value is smaller than  10−8.

4.1  Compared DE algorithms and simulation setup

In order to fairly test the performances of SaCI mutation strategy for DE algorithm, 
we have used the following eight state-of-the-art algorithms shown in Table 2 with 
their recommended setup in the original literature. All of the peer methods could be 
easily embedded with SaCI mutation operator.

All benchmark functions were tested in 10 dimensions. The population size NP 
was set to 50 for D = 10. The maximum of function evaluations (Max_FEs) was set 
to 3000D. Calculated results of different algorithms on each function were averaged 
over 30 independent runs and are reported in Table 3. In order to compare the sig-
nificance between two algorithms, the Wilcoxon rank sum test at 0.05 level is used 
[10, 11]. The Wilcoxon rank sum test results regarding Algorithm 1 versus Algo-
rithm 2 are shown as ‘+’, ‘−’, ‘≈’, when Algorithm 1 is significantly better than, 
significantly worse than and significantly equal to Algorithm  2, respectively. The 
comparison results among DEs with SaCI operator and the original algorithms are 
summarized as ‘‘w/t/l’’ in the last row of the table. In detail, it means that the origi-
nal algorithm wins in w functions, ties in t functions and loses in l functions, com-
pared with its competitors with SaCI operator.

From Table 3, we can see for D = 10 problems, DE algorithms with SaCI muta-
tion operator would beat the corresponding original algorithms on 4 to 26 bench-
mark functions. Meanwhile, the methods with SaCI mutation operator deteriorated 
the performances on very few test functions. For example, jDE-SaCI had outper-
formed jDE on 12 test functions (f2, f4, f6, f9, f10, f12, f13, f20, f24, f25, f26, f27), and 
jDE-SaCI was defeated on 2 test functions (f3, f28). For the other benchmark func-
tions (14 out of 28 cases), there were no significant differences between jDE and 

Table 2  Parameter settings of involved DE variants

Algorithm Setup

DE/rand/1 [19] F = 0.5, Cr = 0.9
DE/best/1 [19] F = 0.5, Cr = 0.9
SaDE [17] F = Norm(0.5, 0.3), Cr = Norm(Crmk, 0.1), LP = 50
JADE [27] c = 0.1, p = 0.05, μF = 0.5, μCR = 0.5
jDE [3] Fl = 0.1, Fu = 0.9, τ1 = τ2 = 0.1
AS-JADE [13] c = 0.1, p = 0.05, μF = 0.5, μCR = 0.5, α = 0.3, β = 0.8
rank-jDE [12] Fl = 0.1, Fu = 0.9, τ1 = τ2 = 0.1
CIMDE/rand/1 [28] c = 0.1, μF = 0.7, μCR = 0.5
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jDE-SaCI. For another instance, DE/best/1-SaCI had outperformed DE/best/1 on 17 
test functions (f1, f7, f12, f13, f16, f17, f18, f19, f20, f22, f23, f25, f26, f27, f28), and DE/best/1-
SaCI was defeated on no test functions. For the other benchmark functions (11 out 
of 28 cases), there were no significant differences between DE/best/1 and DE/best/1-
SaCI. In general, the proposed SaCI-based mutation strategy may improve the per-
formances of original algorithms effectively. Further, we would like to show some 
median convergence curves of all compared algorithms, shown in Fig. 1.

From the above figures, we could see: (1) in most cases, the algorithm with SaCI 
mutation operator did not deteriorate the searching capability. Usually, better con-
vergence performance could be resulted on some test functions. (2) CIMDE/rand/1 
did not perform well on most test functions, while DIMDE/rand/1-SaCI could result 
competitive convergence curves on most benchmark functions. That means that the 
proposed hybrid mutation operator and greedy selection operator are effective. All 
the above figures could demonstrate the comprehensive results in Table 2 vividly.

4.2  Influence of population size

In this section, in order to make the scope of this paper focused, we would like to try 
to research the influence of population size on the proposed SaCI mutation operator. 
Here, we choose jDE-SaCI as the paradigm to test its performances when NP = 25, 
50, 75, 100, respectively. Over 30 independent runs are conducted on CEC 2013 
benchmark functions at D = 10. Like the previous experiment, Max_FEs is set to 
3000D. The experimental results are shown in Table 4. Moreover, in order to show 
the overall rankings of jDE-SaCI with different population sizes, Friedman test [10, 
11] is conducted at α = 0.05 in MATLAB environment. The p values for all func-
tions are shown in Table 4.

From p values in Table 4, we can see NP did not influence the performance of 
jDE-SaCI on 6 out of 28 test functions (f2, f7, f8, f16, f18, f26). For other test func-
tions, NP did influence the searching capability of jDE-SaCI. Besides, jDE-SaCI 
with NP = 25 and NP = 50 usually could obtain outstanding results compared with 
larger NP settings. Therefore, in this paper, it may be acceptable that population size 
is set to 50.

4.3  Analysis of extra time cost

In order to compare the computational complexities of the involved algorithms 
fairly, we would conduct a test program to calculate time consumed on this run-
ning platform. The mentioned calculation method for algorithm complexity was 
suggested by technical report for the CEC 2013 Special Session on Real-Parameter 
Optimization, which could be download via http://www3.ntu.edu.sg/home/epnsu 
gan/. In this section, NP is set to 50. The test steps are listed as follows:

http://www3.ntu.edu.sg/home/epnsugan/
http://www3.ntu.edu.sg/home/epnsugan/
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Fig. 1  Half median convergence curves of all the compared algorithms
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Step 1: Run the MATLAB program below:

for i = 1 : 10,000,00

x = 0.55 + i;
x = x + x;
x = x./2;
x = x * x;
x = sqrt (x);
x = log (x);
x = exp (x);
y = x/x;

end

Computation time for the above = T0;
Step 2: Evaluate the computation time just for f14. For 200,000 evaluations of a 
certain dimension D, it gives T1;

Fig. 1  (continued)
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Step 3: The complete computation time for the algorithm with 200,000 evalua-
tions of the same D-dimensional benchmark function f14 is T2.
Step 4: Execute step 3 for five times and get 5 T2 values. T’2 = mean (T2);
Step 5: The complexity of the algorithm is reflected by: T’2, T1, T0, and 
(T’2 − T1)/T0.

The compared results are shown in Table 5. Five SaCI mutation operators-based 
DE algorithms, which are DE/best/1-SaCI, SaDE-SaCI, JADE-SaCI, AS-JADE-
SaCI and CIMDE/rand/1-SaCI, spent less time cost than the corresponding algo-
rithms. It may mean that the proposed mutation operator could speed up the search-
ing process and avoid using the original complex genetic operations, while the other 
three SaCI-based DE algorithms spent more time than the original algorithms. In 
general, the presented SaCI mutation operator did not deteriorate the calculation 
efficiency of the selected DE algorithms.

Table 4  Compared results and Friedman test of jDE-SaCI with different population sizes for D = 10

NP = 25 NP = 50 NP = 75 NP = 100 p value

f1 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 2.05E−12 ± 1.66E−12 3.22E−07
f2 2.60E+04 ± 4.38E+04 9.64E+03 ± 7.66E+03 1.91E+04 ± 1.44E+04 4.46E+04 ± 2.06E+04 1.32E−02
f3 3.46E+04 ± 1.12E+05 3.56E+03 ± 7.97E+03 1.11E+03 ± 1.25E+03 3.69E+04 ± 3.12E+04 1.97E−04
f4 9.57E+01 ± 1.31E+02 5.39E+01 ± 6.16E+01 1.88E+02 ± 1.58E+02 3.95E+02 ± 1.19E+02 6.83E−04
f5 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 8.64E−12 ± 9.02E−12 1.11E−08 ± 5.06E−09 3.22E−07
f6 3.75E−01 ± 1.20E+00 1.15E+00 ± 1.45E+00 1.96E+00 ± 6.02E−01 3.81E+00 ± 1.33E+00 4.33E−05
f7 7.01E+00 ± 9.82E+00 1.93E+00 ± 4.65E+00 1.72E+00 ± 1.46E+00 2.03E+00 ± 1.04E+00 6.42E−02
f8 2.05E+01 ± 8.35E−02 2.05E+01 ± 6.66E−02 2.05E+01 ± 1.13E−01 2.04E+01 ± 1.08E−01 8.19E−01
f9 3.72E+00 ± 2.50E+00 7.48E+00 ± 8.48E−01 7.60E+00 ± 8.66E−01 7.66E+00 ± 6.94E−01 5.31E−03
f10 8.18E−02 ± 4.51E−02 3.65E−01 ± 8.80E−02 4.03E−01 ± 1.07E−01 5.16E−01 ± 1.08E−01 2.43E−05
f11 0.00E+00 ± 0.00E+00 2.67E−07 ± 7.17E−07 1.74E+00 ± 9.87E−01 4.35E+00 ± 1.14E+00 3.22E−07
f12 1.08E+01 ± 6.56E+00 1.83E+01 ± 5.19E+00 2.38E+01 ± 5.45E+00 2.28E+01 ± 2.82E+00 2.88E−03
f13 1.41E+01 ± 7.74E+00 1.94E+01 ± 3.99E+00 2.52E+01 ± 4.65E+00 2.34E+01 ± 3.38E+00 1.97E−02
f14 2.50E+01 ± 1.42E+01 1.83E+02 ± 8.43E+01 2.94E+02 ± 8.43E+01 3.66E+02 ± 1.07E+02 2.43E−05
f15 1.28E+03 ± 1.98E+02 1.57E+03 ± 1.67E+02 1.62E+03 ± 2.42E+02 1.50E+03 ± 1.91E+02 6.18E−03
f16 1.56E+00 ± 2.50E−01 1.45E+00 ± 3.92E−01 1.50E+00 ± 2.50E−01 1.63E+00 ± 1.73E−01 6.64E−01
f17 1.12E+01 ± 2.60E−01 1.42E+01 ± 1.44E+00 1.63E+01 ± 8.73E−01 1.67E+01 ± 1.59E+00 7.66E−06
f18 3.77E+01 ± 4.26E+00 3.94E+01 ± 4.48E+00 4.21E+01 ± 2.79E+00 4.21E+01 ± 3.97E+00 9.44E−02
f19 8.40E−01 ± 1.66E−01 9.66E−01 ± 1.65E−01 1.06E+00 ± 7.24E−02 1.23E+00 ± 1.88E−01 2.18E−04
f20 3.29E+00 ± 5.02E−01 3.21E+00 ± 2.61E−01 3.50E+00 ± 2.66E−01 3.50E+00 ± 3.68E−01 2.52E−02
f21 3.91E+02 ± 3.02E+01 4.00E+02 ± 2.38E−13 3.82E+02 ± 6.04E+01 4.00E+02 ± 2.12E−12 1.15E−06
f22 2.00E+02 ± 1.13E+02 4.28E+02 ± 1.19E+02 5.66E+02 ± 1.23E+02 5.98E+02 ± 1.57E+02 2.98E−04
f23 1.48E+03 ± 2.24E+02 1.61E+03 ± 2.53E+02 1.75E+03 ± 1.37E+02 1.76E+03 ± 1.98E+02 7.20E−03
f24 2.11E+02 ± 6.19E+00 2.19E+02 ± 2.81E+00 2.21E+02 ± 1.77E+00 2.20E+02 ± 4.93E+00 1.14E−03
f25 2.14E+02 ± 6.53E+00 2.20E+02 ± 2.43E+00 2.22E+02 ± 2.27E+00 2.22E+02 ± 2.28E+00 2.74E−03
f26 1.66E+02 ± 4.68E+01 1.86E+02 ± 3.11E+01 1.88E+02 ± 2.64E+01 1.98E+02 ± 5.57E+00 1.83E−01
f27 3.50E+02 ± 5.45E+01 4.93E+02 ± 1.91E+01 4.95E+02 ± 2.68E+01 5.12E+02 ± 1.80E+01 6.58E−05
f28 3.11E+02 ± 1.18E+02 3.23E+02 ± 7.53E+01 2.82E+02 ± 6.03E+01 2.82E+02 ± 6.03E+01 1.73E−03

Best results are shown in boldface
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5  Conclusions and future work

In this paper, we have proposed a novel mutation strategy which utilizes CI theory 
for DE variants. Mainly, the evolutionary information of m best target vectors is lin-
early combined to generate new mutant vectors. Besides, m is designed as an expo-
nential-distributed random number which could be self-adapted based on successful 
records of m values alongside evolution. Moreover, this mutation operator could be 
applied to any DE algorithm without destroying existing search capability by add-
ing a greedy selection operator. Comprehensive experimental results demonstrate 
that the proposed mutation strategy could improve the overall performances of some 
state-of-the-art DE variants effectively.

In the future, we try to expand the application of this SaCI-based mutation strat-
egy to more versatile DE methods. Meanwhile, it is attractive to apply such SaCI-
based mutation strategy for various DE algorithms on real engineering problems 
such as parameters identification of remote operated vehicle.
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